目录
引言:一个为脑机接口研究提供坚实基础的数据集
脑机接口(Brain-Computer Interface,BCI)作为连接大脑与外部设备的桥梁,在医学、娱乐和智能家居等多个领域展现了巨大的研究价值。而在这一领域,数据集的作用就如硬件的基础,能够为研究人员提供实际的实验数据,推动技术的发展。清华大学脑机接口研究组发布的Benchmark dataset数据集,为SSVEP(稳态视觉诱发电位)-BCI领域提供了一组高质量、多样化的数据,极大地支持了算法研究和系统优化,为SSVEP(稳态视觉诱发电位)BCI领域的研究提供了重要的基础。
网站地址:清华大学脑机接口研究组
数据集概述:35名参与者的SSVEP-BCI测试数据
1. 参与者信息
- 参与人数:共有35名健康参与者(17名女性,年龄17至34岁,平均年龄为22岁)。
- 分组:
- 经验组(8名参与者,编号S01至S08):这些参与者对SSVEP-BCI有过较多的研究经验。
- 新手组(27名参与者,编号S09至S35):这些参与者对SSVEP-BCI的经验较少,主要用于数据收集的基础研究。
2. 实验设计
- 任务要求:
- 每位参与者需要完成6个实验“块”(Block)。
- 每个实验块包含40个“试验”(Trial),分别对应40个不同的字符(Character)。
- 每个试验的流程如下:
- 视觉提示(Visual Cue):屏幕中央显示一个红色正方形(Red Square),提示参与者需要尽快注视目标。
- 刺激启动(Stimulus Onset):提示终止后,40个字符开始在屏幕上以特定频率(8-15.8Hz,间隔0.2Hz)闪烁。
- 刺激持续(Stimulus Duration):刺激持续5秒。
- 空白时间(Blank Interval):刺激终止后,屏幕暂空0.5秒,为参与者提供短暂休息。
- 刺激频率:每个实验块中,40个字符的闪烁频率从8Hz到15.8Hz逐次递增,间隔0.2Hz。
- 注视要求:参与者需要在视觉提示期间尽快注视目标字符,避免眼跳。
3. 数据采集
- 设备配置:
- 采样设备:使用Neuroscan Synamps2系统(Neuroscan, Inc.),采样率为1000Hz。
- 电极数量:64个电极覆盖全头皮,符合国际10-20电极系统标准。
- 电极位置:参考电极(Reference)位于顶点,地电极(Ground)位于Fz和FPz的中点。
- 电极阻抗:每个电极的阻抗保持在10KΩ以内,以确保信号质量。
- 去噪处理:在数据采集过程中,采用50Hz的脉冲去噪滤波器(Notch Filter)消除电网干扰。
- 事件触发:
- 实验过程中,计算机生成的触发信号通过事件通道传输到采样器,并与EEG数据同步记录。
- 每个试验的开始时间(Epoch)定义为500ms前的预处理期,信号持续6秒(500ms预处理 + 5.5秒刺激)。
4. 数据处理与存储
- 数据分割:连续的EEG数据按照实验设计的时间划分为6秒的“Epoch”,每个Epoch包含:
- 500ms的预处理期(Pre-stimulus)信号。
- 5.5秒的刺激响应期(Post-stimulus Onset)。
- 降采样:每个Epoch的信号被降采样至250Hz,以减少数据体积,同时保留关键信息。
- 数据格式:
- 数据以MATLAB格式存储,每个参与者的数据文件名为“S01.mat”、“S02.mat”等,按照“Subject Index”编号。
- MATLAB文件中包含一个4维矩阵“data”,维度为[Electrode Index(64),Time Points(1500),Target Index(40),Block Index(6)]。
- data矩阵的含义:
- Electrode Index(64):表示64个电极的信号。
- Time Points(1500):表示降采样后的1500个时间点。
- Target Index(40):表示40个字符对应的目标索引。
- Block Index(6):表示6个实验块的索引。
- 电极位置信息:电极位置数据保存在“64-channels.loc”文件中,包含每个电极的具体位置信息。
-
- 频率与相位信息:频率(Freq)和相位(Phase)信息保存在“Freq_Phase.mat”文件中,分别对应40个字符的频率和相位值。
- 参与者信息:所有参与者的基本信息(如性别、年龄、手性等)保存在“Sub_info.txt”文件中,格式为五列:Subject Index、Gender、Age、Handedness、Group。
数据集的价值与适用场景
1. 数据集的优势
- 多样性:35名参与者中,既有经验丰富的研究者,也有经验较少的新手,能够覆盖不同参与者群体的数据特征。
- 频率覆盖:刺激频率从8Hz到15.8Hz,覆盖了SSVEP研究中常用的频率范围。
- 数据标准化:数据格式统一、结构清晰,便于研究者直接使用和分析。
- 高质量:采样率高、电极数量多、去噪处理完善,确保了数据的可靠性和一致性。
2. 数据集的适用场景
- SSVEP-BCI研究:研究人员可以利用该数据集进行SSVEP信号的特征提取、算法优化以及解码器设计。
- 跨学科研究:数据集可用于神经科学、计算机科学、工程学等多个领域的交叉研究。
- 算法验证:开发和验证各种BCI算法(如CCA、LDA等)的研究可以基于此数据集进行。
如何获取与使用数据集
1. 获取数据集
网站地址: 清华大学脑机接口研究组
2. 使用数据集
实际应用的案例,可以看我另一篇文章脑机接口SSVEP经典算法 FBCCA滤波器组典型相关分析 matlab实战
(1)64-channels.loc
电极位置保存在一个名为“64-channels.loc”的文件中,该文件包含了所有通道的位置,采用极坐标形式。每个电极的信息包含四列:
- 电极索引
- 角度
- 半径
- 标签
例如,第一个电极的信息如下:
- 电极索引: “1”
- 角度: “-18”
- 半径: “0.51111”
- 标签: “FP1”
这表示第一个电极(FP1)的角度为 -18,半径为 0.51111。
(2)Freq_Phase.mat
测试数据S1.mat等,格式为[64, 1500, 40, 6],
Freq_Phase.mat内附有freqs和phases两组数据,1x40大小,这里的40就是对应[64, 1500, 40, 6]中40,每个位置上的频率和相位信息。
(3)S1、S2.mat数据文件
数据格式为[64, 1500, 40, 6] ,第一维度size为64,是64个电极通道,具体是哪个电极请对应64-channels.loc查看。第二维度size是1500,这是测试里每个时间点上的数据。第三维度size是 40,这是受试者观看的40个不同的ssvep刺激范式的频率。第四维度size是6,这是实验试次,每个人单独重复6次实验。
实际应用的案例,可以看我另一篇文章,
脑机接口SSVEP经典算法 FBCCA滤波器组典型相关分析 matlab实战
先读取文件,用for循环遍历6个试次,然后遍历40个刺激目标,选取不同通道的1500个数据用
(4)Sub_info.txt
受试者信息文件,格式为五列:Subject Index、Gender、Age、Handedness、Group。
参考文献:
Y. Wang, X. Chen, X. Gao and S. Gao, "A Benchmark Dataset for SSVEP-Based Brain–Computer Interfaces," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 10, pp. 1746-1752, Oct. 2017, doi: 10.1109/TNSRE.2016.2627556.
keywords: {Electroencephalography;Electrodes;Frequency modulation;Indexes;Benchmark testing;Visualization;Encoding;Brain–computer interface (BCI);electroencephalogram (EEG);joint frequency and phase modulation (JFPM);public data set;steady-state visual evoked potential (SSVEP)},