递归式特征消除:Recursive feature elimination

本文深入探讨了sklearn中的特征选择方法,包括RFE和RFECV等递归特征消除技术,以及SelectFpr、SelectFdr和SelectFwe等多类比较特征选择策略。通过实例演示了这些方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简述

特征的选取方式一共有三种,在sklearn实现了的包裹式(wrapper)特诊选取只有两个递归式特征消除的方法,如下:

  • recursive feature elimination ( RFE ) 通过学习器返回的 coef_ 属性 或者 feature_importances_ 属性来获得每个特征的重要程度。 然后,从当前的特征集合中移除最不重要的特征。在特征集合上不断的重复递归这个步骤,直到最终达到所需要的特征数量为止。
  • RFECV 通过交叉验证来找到最优的特征数量。如果减少特征会造成性能损失,那么将不会去除任何特征。这个方法用以选取单模型特征相当不错,但是有两个缺陷,一,计算量大。二,随着学习器(评估器)的改变,最佳特征组合也会改变,有些时候会造成不利影响。

RFE

性能升降问题

PFE 自身的特性,使得我们可以比较好的进行手动的特征选择,但是同样的他也存在原模型在去除特征后的数据集上的性能表现要差于原数据集,这和方差过滤一样,同样是因为去除的特征中保留有有效信息的原因。下面的代码就很好的展示了这种现象。

from sklearn.feature_selection import RFE, RFECV
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from  sklearn import model_selection

iris = load_iris()
X, y = iris.data, iris.target
## 特征提取
estimator = LinearSVC()
selector = RFE(estimator=estimator, n_features_to_select=2)
X_t = selector.fit_transform(X, y)
### 切分测试集与验证集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y,
                                                                    test_size=0.25, random_state=0, stratify=y)
X_train_t, X_test_t, y_train_t, y_test_t = model_selection.train_test_split(X_t, y,
                                                                            test_size=0.25, random_state=0,
                                                                            stratify=y)
## 测试与验证
clf = LinearSVC()
clf_t = LinearSVC()
clf.fit(X_train, y_train)
clf_t.fit(X_train_t, y_train_t)
print("Original DataSet: test score=%s" % (clf.score(X_test, y_test)))
print("Selected DataSet: test score=%s" % (clf_t.score(X_test_t, y_test_t)))
Original DataSet: test score=0.973684210526
Selected DataSet: test score=0.947368421053

从上面的代码我们可以看出,原模型的性能在使用RFE后确实下降了,如同方差过滤,单变量特征选取一样,这种方式看来使用这个方法我们也需要谨慎一些啊。

一些重要的属性与参数

  • n_features_to_select :选出的特征整数时为选出特征的个数,None时选取一半
  • step : 整数时,每次去除的特征个数,小于1时,每次去除权重最小的特征
print("N_features %s" % selector.n_features_) # 保留的特征数
print("Support is %s" % selector.support_) # 是否保留
print("Ranking %s" % selector.ranking_) # 重要程度排名
N_features 2
Support is [False  True False  True]
Ranking [3 1 2 1]

RFECV

原理与特性

使用交叉验证来保留最佳性能的特征。在REF的基础上对不同的特征组合进行交叉验证,学习器本身不变,通过计算其决策系数之和,最终得到不同特征对于score的重要程度,然后保留最佳的特征组合。其分割方式类似于随机森林中的列上子采样。

一些重要的属性与参数

  • step : 整数时,每次去除的特征个数,小于1时,每次去除权重最小的特征
  • scoring : 字符串类型,选择sklearn中的scorer作为输入对象
  • cv :
    • 默认为3折
    • 整数为cv数
    • object:用作交叉验证生成器的对象
    • An iterable yielding train/test splits.

对于 迭代器或者没有输入(None), 如果 y 是 二进制 或者 多类,则使用 sklearn.model_selection.StratifiedKFold. 如果学习器是个分类器 或者 如果 y 不是 二进制 或者 多类,使用 sklearn.model_selection.KFold.

如果你对于前面的花不太理解,那么你可以看一下下面的例子,或者自己动手尝试一下

例子一

对于前面RFE中的数据集进行验证,应当应该保留那些特征:

iris = load_iris()
X = iris.data
y = iris.target
estimator = LinearSVC()
selector = RFECV(estimator=estimator, cv=3)
selector.fit(X, y)
print("N_features %s" % selector.n_features_)
print("Support is %s" % selector.support_)
print("Ranking %s" % selector.ranking_)
print("Grid Scores %s" % selector.grid_scores_)
N_features 4
Support is [ True  True  True  True]
Ranking [1 1 1 1]
Grid Scores [ 0.91421569  0.94689542  0.95383987  0.96691176]

好吧,看来都应该保留

例子二

RFECV的强大作用:

import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import make_classification

# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000, n_features=25, n_informative=3,
                           n_redundant=2, n_repeated=0, n_classes=8,
                           n_clusters_per_class=1, random_state=0)

# Create the RFE object and compute a cross-validated score.
svc = SVC(kernel="linear")
# The "accuracy" scoring is proportional to the number of correct
# classifications
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2),
              scoring='accuracy')
rfecv.fit(X, y)

print("Optimal number of features : %d" % rfecv.n_features_)
print("Ranking of features : %s" % rfecv.ranking_)

# Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()
Optimal number of features : 3
Ranking of features : [ 5  1 12 19 15  6 17  1  2 21 23 11 16 10 13 22  8 14  1 20  7  9  3  4 18]

特征选择的作用

(划重点了,咳咳)

通过RFECV我们得知,原来只需要三个特征就好了,首先这确实符合我们构造的数据,同时这也向我们展示了RFECV的强大潜力,看来它将成为我们之后进行特征选取的一个重要助手(o)/~

三个特殊的多类比较特征选择

假阳性率(false positive rate) SelectFpr

伪发现率(false discovery rate) SelectFdr

或者族系误差(family wise error) SelectFwe

其实际意义请参考 wiki:Multiple_comparisons_problem

下面是代码展示

from sklearn.feature_selection import SelectFdr,f_classif,SelectFpr,SelectFwe,chi2,mutual_info_classif

iris = load_iris()
X = iris.data
y = iris.target

selector1 = SelectFpr(score_func = mutual_info_classif,alpha=0.5)
# alpha是预期错误发现率的上限,默认是0.5,score_func 默认为 f_classif
selector1.fit(X, y)
print("\nScores of features %s" % selector1.scores_)
print("p-values of feature scores is %s" % selector1.pvalues_)
# print("Shape after transform is ",selector1.transform(X).shape)


selector2 = SelectFdr(score_func = f_classif,alpha=4.37695696e-80) # alpha是预期错误发现率的上限
selector2.fit(X, y)
print("\nScores of features %s" % selector2.scores_)
print("p-values of feature scores is %s" % selector2.pvalues_)
print("Shape after transform is ",selector2.transform(X).shape)

selector3 = SelectFwe(score_func = chi2,alpha=1) # alpha是预期错误发现率的上限
selector3.fit(X, y)
print("\nScores of features %s" % selector3.scores_)
print("p-values of feature scores is %s" % selector3.pvalues_)
print("Shape after transform is ",selector3.transform(X).shape)
输出:
Scores of features [ 0.54158942  0.21711645  0.99669173  0.99043692]
p-values of feature scores is None

Scores of features [  119.26450218    47.3644614   1179.0343277    959.32440573]
p-values of feature scores is [  1.66966919e-31   1.32791652e-16   3.05197580e-91   4.37695696e-85]
Shape after transform is  (150, 2)

Scores of features [  10.81782088    3.59449902  116.16984746   67.24482759]
p-values of feature scores is [  4.47651499e-03   1.65754167e-01   5.94344354e-26   2.50017968e-15]
Shape after transform is  (150, 4)

通用RFE:GenericUnivariateSelect

在学习了前面的RFE之后,sklearn还封装了一个通用的RFE:GenericUnivariateSelect,它可以通过超参数来设置我们需要的RFE,一共是三个超参数灰常简单易用。

  • score_func : 评价函数(和前面的意思一样)
  • mode : sklearn 封装的模型
  • param : 之前sklearn中封装的模型都有一个相应的控制阈值的超参数 param,此处意义相同

下面是一个简单的小例子

from sklearn.feature_selection import GenericUnivariateSelect

iris = load_iris()
X = iris.data
y = iris.target
estimator = LinearSVC()
selector = GenericUnivariateSelect(score_func=f_classif,mode='fpr',param= 0.5)
# mode : {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}
selector.fit(X, y)
print("\nScores of features %s" % selector.scores_)
print("p-values of feature scores is %s" % selector.pvalues_)
print("Shape after transform is ",selector.transform(X).shape)
print("Support is ",selector.get_support())
print("Params is ",selector.get_params())
Scores of features [  119.26450218    47.3644614   1179.0343277    959.32440573]
p-values of feature scores is [  1.66966919e-31   1.32791652e-16   3.05197580e-91   4.37695696e-85]
Shape after transform is  (150, 4)
Support is  [ True  True  True  True]
Params is  {'mode': 'fpr', 'param': 0.5, 'score_func': <function f_classif at 0x7f6ecee7d7b8>}

参考资料

<think>嗯,用户需要查找与RFE(递归特征消除)相关的结构图或架构图,特别是在软件开发中的。首先,我需要确认RFE的基本流程,然后思考如何将其转化为结构图。RFE的核心步骤包括迭代训练模型、根据特征重要性排序、移除最不重要特征,直到达到预定特征数。这可能涉及循环结构和条件判断。 接下来,用户可能希望了解RFE的各个组件如何交互,比如数据流、模型训练部分、特征评估机制等。结构图可能需要展示这些模块之间的关系,比如数据预处理、模型迭代、特征选择循环等。另外,可能需要考虑不同模型对RFE的影响,比如使用SVM、随机森林或逻辑回归时,架构是否有差异。 然后,用户提到的软件架构图可能需要分层,比如展示用户界面、算法核心模块、数据处理层等。或者,从流程角度出发,绘制从输入数据到最终特征选择的步骤。此外,用户可能希望看到可视化示例,或者相关的工具支持,比如scikit-learn中的RFE类结构。 还需要考虑用户可能的深层需求,比如如何实现RFE,或者在不同编程语言中的实现差异。例如,Python中的sklearn和R中的caret包可能有不同的结构设计。此外,架构图中是否需要包括并行处理或优化策略,以应对计算成本高的问题? 最后,用户可能希望有参考资料或示例图,但目前站内引用中没有直接提供结构图,但引用了RFE的应用案例和缺点。可能需要建议用户查阅相关文献或工具文档,或者根据流程描述自行绘制。同时,相关问题部分可以引导用户进一步探索性能优化或实际应用场景。</think>### RFE(递归特征消除)的架构与流程说明 RFE(Recursive Feature Elimination)在软件开发中通常以迭代算法为核心,其架构设计围绕特征选择流程展开。以下是其核心组件和流程的分解: #### 1. **架构示意图(文字描述)** ``` +-----------------------+ | 输入数据集 | → 原始特征矩阵和标签 +-----------------------+ ↓ +-----------------------+ | 初始化特征集合 | → 包含所有候选特征 +-----------------------+ ↓ +-----------------------+ | 迭代循环开始 | → 循环直到满足终止条件 | +-----------------+ | | | 训练模型并计算 | | → 使用当前特征训练模型(如SVM、LR等) | | 特征重要性排序 | | → 输出特征权重或得分 | +-----------------+ | | ↓ | | +-----------------+ | | | 移除最不重要特征 | | → 根据阈值或固定比例剔除 | +-----------------+ | +-----------------------+ ↓ +-----------------------+ | 输出最终特征子集 | → 满足预设特征数量或性能指标 +-----------------------+ ``` #### 2. **关键模块说明** - **模型训练器**:依赖外部估计器(如逻辑回归、支持向量机)生成特征权重[^1] - **特征评估器**:根据模型输出的系数或重要性分数对特征排序 - **迭代控制器**:管理终止条件(如特征数量阈值或模型性能下降容忍度) - **数据处理器**:动态调整特征矩阵,每次迭代后剔除指定数量的特征 #### 3. **典型代码结构示例(Python/scikit-learn)** ```python from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression # 架构中的核心组件实例化 estimator = LogisticRegression() # 外部模型依赖 selector = RFE( estimator, n_features_to_select=5, # 终止条件参数 step=1 # 每次迭代移除的特征数 ) # 数据流处理 selector.fit(X_train, y_train) # 触发迭代循环 selected_features = X_train.columns[selector.support_] ``` #### 4. **架构特点** - **分层设计**:将特征选择过程解耦为数据层、算法层和控制层 - **模块化扩展**:可通过替换不同的`estimator`实现不同评估策略[^2] - **性能瓶颈**:迭代次数与特征数量正相关,大数据集需优化计算资源分配 #### 5. **可视化建议** 1. **UML活动图**:展示迭代循环和条件分支 2. **数据流图(DFD)**:突出特征矩阵的动态变化过程 3. **类图**:描述scikit-learn中`RFE`类与`TransformerMixin`的继承关系
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Font Tian

写的很好,请给我钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值