在学习《深度学习入门:基于 Python 的理论与实现》153页的代码时,我对SoftmaxWithLoss层的反向传播实现产生了疑问,
class SoftmaxWithLoss:
def __init__(self):
self.loss = None # 损失
self.y = None # softmax的输出
self.t = None # 监督数据(one-hot vector)
def forward(self, x, t):
self.t = t
self.y = softmax(x)
self.loss = cross_entropy_error(self.y, self.t)
return self.loss
#反向传播代码实现
def backward(self, dout=1):
batch_size = self.t.shape[0]
dx = (self.y - self.t) / batch_size # 为什么要除以批数量
return dx
回顾书上给的计算图,图1中,反向输出的结果是没有除以batch_size的。为什么该层的反向传递值要除以批数量呢?
分割线--------------------------------------------------------------------------------------------------
思考后我突然意识到,图1中的计算图是batch_size=1的情况,而在代码1中,batch_size不等于1,在实现cross_entropy_error层时,一定对输出结果Loss进行了处理 (Loss/batch_size),因此 图1是不完整的,导致反向输出结果是不完整的。
交叉熵计算过程源码如下
def cross_entropy_error(y, t):
if y.ndim == 1:
t = t.reshape(1, t.size)
y = y.reshape(1, y.size)
# 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
if t.size == y.size:
t = t.argmax(axis=1)
batch_size = y.shape[0]
return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size # 根据批数量求得平均值
分割线--------------------------------------------------------------------------------------------------
因此,完整的计算图见图2。 图2中反向输出结果符合代码1的backward函数。(注:新增计算图部分理论上属于交叉熵误差层,为方便补充单列出来)
问题解决。