【题目】
题目描述:
给出 n n n 个点, m m m 条带权无向边,问你从 1 1 1 号点到 n n n 号点的最短路中有多少种走法?
输入格式:
第一行两个数 n , m n,m n,m 分别表示点的个数和边的个数。( 2 2 2 ≤ n n n ≤ 5000 5000 5000, 1 1 1 ≤ m m m ≤ 100000 100000 100000) 接下来 m m m 行,每行 3 3 3 个数 u , v , w u,v,w u,v,w 表示 u u u 号点到 v v v 号点有一条距离为 w w w 的边。( 1 1 1 ≤ u , v u,v u,v ≤ n n n, 0 0 0 ≤ w w w ≤ 5000 5000 5000) 数据保证 1 1 1 号点能够到达 n n n 号点,点和边都可以被走多次。
输出格式:
如果有无穷种走法,输出 − 1 -1 −1。否则输出走法的方案数 m o d mod mod 1000000009 1000000009 1000000009。
样例数据:
输入
4 4
1 2 1
1 3 1
2 4 1
3 4 1
输出
2
【分析】
依旧是一个最短路计数模板题
不过这道题有一个新的东西:无穷种走法
那么怎样会是无穷种走法呢?由于没有负边权,所以只有当最短路中出现了边权为 0 0 0 边,就有无穷种走法
而现在的问题就是如何判断一条边是否在最短路之间出现过
其实也很简单,正着做一遍最短路( d d d),倒着做一遍最短路( d i s dis dis),如果 d i + d i s j + w i , j = d n d_i+dis_j+w_{i,j}=d_n di+disj+wi,j=dn,就出现过
然后其它的套模板就可以了
【代码】
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 5005
#define M 500005
#define Mod 1000000009
#define inf 1061109567
using namespace std;
int n,m,t,tot;
int d[N],num[N],dis[N];
int first[N],v[M],w[M],nxt[M];
priority_queue<pair<int,int> >q;
pair<int,int>edge[M];bool vis[N];
void add(int x,int y,int z)
{
t++;
nxt[t]=first[x];
first[x]=t;
v[t]=y;
w[t]=z;
}
void dijkstra(int s)
{
int x,y,i;
memset(d,0x3f,sizeof(d));
d[s]=0;q.push(make_pair(0,s));
while(!q.empty())
{
x=q.top().second;q.pop();
if(vis[x])continue;vis[x]=true;
for(i=first[x];i;i=nxt[i])
{
y=v[i];
if(d[y]>d[x]+w[i])
{
num[y]=num[x];
d[y]=d[x]+w[i];
q.push(make_pair(-d[y],y));
}
else if(d[y]==d[x]+w[i])
num[y]=(num[y]+num[x])%Mod;
}
}
}
int main()
{
int x,y,z,i,j;
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z),add(y,x,z);
if(!z) edge[++tot]=make_pair(x,y);
}
dijkstra(n);
memcpy(dis,d,sizeof(dis));
memset(num,0,sizeof(num));
memset(vis,false,sizeof(vis));
num[1]=1,dijkstra(1);
for(i=1;i<=tot;++i)
{
if(d[edge[i].first]+dis[edge[i].second]==d[n])
{
printf("-1");
return 0;
}
}
printf("%d",num[n]);
return 0;
}