【题目】
题目描述:
Wayne 在玩儿一个很有趣的游戏。
在游戏中,Wayne 建造了 n n n 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有 m m m 对城市间能修公路,即有若干三元组 ( u i , v i , c i ) (u_i,v_i,c_i) (ui,vi,ci) 表示 u i u_i ui 和 v i v_i vi 间有一条长度为 c i c_i ci 的双向道路。
当然,游戏保证了,若所有道路都修建,那么任意两城市可以互相到达。
Wayne 拥有恰好 n − 1 n-1 n−1 支修建队,每支队伍能且仅能修一条道路。当然,修建长度越大,修建的劳累度也越高,游戏设定是修建长度为 c c c 的公路就会有 c c c 的劳累度。当所有的队伍完工后,整个城市群必须连通,而这些修建队伍们会看看其他队伍的劳累情况,若劳累情况差异过大,可能就会引发骚动,不利于社会和谐发展。
Wayne 对这个问题非常头疼,于是他想知道,这 n − 1 n-1 n−1 支队伍劳累度的标准差最小能有多少。
标准差的定为:设有 n n n 个数,分别为 a i a_i ai,它们的平均数为 a ‾ \overline a a,那么标准差就是 ∑ i = 1 n ( a i − a ‾ ) 2 n \sqrt \frac{\sum_{i=1}^n (a_i-\overline a)^2}{n} n∑i=1n(ai−a)2。
输入格式:
第一行两个正整数 n , m n,m n,m
接下来 m m m 行,每行三个正整数 u i , v i , c i u_i,v_i,c_i ui,vi,ci
输出格式:
输出最小的标准差,保留四位小数。
样例数据:
输入
3 3
1 2 1
2 3 2
3 1 3
输出
0.5000
提示:
n ≤ 100 n≤100 n≤100, m ≤ 2000 m≤2000 m≤2000, c i ≤ 100 c_i≤100 ci≤100
【分析】
这道题的算法有点暴力。
实际上就是要使 ∑ i = 1 n − 1 ( a i − a ‾ ) 2 \sum_{i=1}^{n-1}(a_i-\overline a)^2 ∑i=1n−1(ai−a)2 最小(除以 n − 1 n-1 n−1,开根号可以统计完再处理)。
假如我们已经知道了 a ‾ \overline a a,那就直接将边权修改为 ( a i − a ‾ ) 2 (a_i-\overline a)^2 (ai−a)2,跑最小生成树就是答案。
我们计算出最小生成树的边权和 l l l,最大生成树的边权和 r r r,那么显然 a ‾ ∈ [ l n − 1 , r n − 1 ] \overline a\in[\frac{l}{n-1},\frac{r}{n-1}] a∈[n−1l,n−1r]。
这个范围是不大的,我们可以通过枚举 a ‾ \overline a a 来求解答案。
又由于 a ‾ = ∑ i = 1 n − 1 a i n − 1 \overline a=\frac{\sum_{i=1}^{n-1}a_i}{n-1} a=n−1∑i=1n−1ai,分母为 n − 1 n-1 n−1,我们可以这样枚举:枚举 [    l    ,    r    ] [\;l\;,\;r\;] [l,r] 中的每个整数 i i i,那么 i n − 1 \frac{i}{n-1} n−1i 就作为当前平均数。
如果我们枚举 a ‾ 1 \overline a_1 a1 做出的生成树的平均值不为 a ‾ 1 \overline a_1 a1,为 a ‾ 2 \overline a_2 a2,那么此时的答案必定没有枚举到 a ‾ 2 \overline a_2 a2 时的优,正确性是没问题的。
时间复杂度 O ( ( r − l ) ⋅ m log 2 m ) O((r-l)\cdot m\log_2m) O((r−l)⋅mlog2m)
【代码】
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 105
#define M 2005
using namespace std;
int n,m;
struct edge
{
int u,v,w;
double W;
}e[M];
int father[N];
bool operator<(const edge &p,const edge &q){return p.W<q.W;}
int find(int x)
{
if(father[x]==x) return x;
return father[x]=find(father[x]);
}
double kruskal()
{
int i;
double ans=0.0;
for(i=1;i<=n;++i) father[i]=i;
for(i=1;i<=m;++i)
{
int x=find(e[i].u);
int y=find(e[i].v);
if(x!=y) father[x]=y,ans+=e[i].W;
}
return ans;
}
int main()
{
int i,j,Min,Max;
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w),e[i].W=e[i].w;
sort(e+1,e+m+1),Min=kruskal();
reverse(e+1,e+m+1),Max=kruskal();
double ans=2e9,ave;
for(i=Min;i<=Max;++i)
{
ave=1.0*i/(n-1);
for(j=1;j<=m;++j)
e[j].W=(e[j].w-ave)*(e[j].w-ave);
sort(e+1,e+m+1);
ans=min(ans,kruskal());
}
printf("%.4lf",sqrt(ans/(n-1)));
return 0;
}