Problem
给定一个有 n n n 个点 m m m 条边的有向图,边带权。在图中找到一个环,这个环上的边权平均值最小,求出这个最小值。
注意边权可以为负。
数据范围: n ≤ 3000 , m ≤ 10000 , ∣ w i , j ∣ ≤ 1 0 7 n≤3000,m≤10000,∣w_{i,j}∣≤10^7 n≤3000,m≤10000,∣wi,j∣≤107。
Solution
很显然这是一道分数规划的题。
假设环上有 k k k 个点(也即有 k k k 条边),且边权分别 w 1 , w 2 , . . . , w k w_1,w_2,...,w_k w1,w2,...,wk。那我们就是要让 ∑ i = 1 k w i k \frac{\sum_{i=1}^kw_i}{k} k∑i=1kwi 最小。
设这个最小值为 λ λ λ,那对于图中任意一个环,都有 ∑ i = 1 k ′ w i k ′ ≥ λ \frac{\sum_{i=1}^{k'}w_i}{k'}≥\lambda k′∑i=1k′wi≥λ。
那稍微化简一下就是 ∑ i = 1 k ′ w i − k ′ λ ≥ 0 \sum_{i=1}^{k'}w_i-k'\lambda≥0 ∑i=1k′wi−k′λ≥0,也即 ∑ i = 1 k ′ ( w i − λ ) ≥ 0 \sum_{i=1}^{k'}(w_i-\lambda)≥0 ∑i=1k′(wi−λ)≥0。
于是我们二分答案,令 m i d mid mid 为当前的二分值,将所有的边权变为 w i − m i d w_i-mid wi−mid。可以发现,当图中出现负环时, m i d > λ mid>\lambda mid>λ,应当将 m i d mid mid 调小;反之应将 m i d mid mid 调大。
**注意:**这道题卡 b f s bfs bfs 版的写法,要写成 d f s dfs dfs 版才能过。
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50005
#define eps 1e-10
using namespace std;
int n,m,t;
int first[N],v[N],nxt[N],vis[N];
double w[N],d[N];
void add(int x,int y,double z){
nxt[++t]=first[x],first[x]=t,v[t]=y,w[t]=z;
}
bool spfa(int x,double mid){
vis[x]=1;
for(int i=first[x];i;i=nxt[i]){
int to=v[i];
double len=w[i]-mid;
if(d[to]>d[x]+len){
d[to]=d[x]+len;
if(vis[to]||spfa(to,mid)) return true;
}
}
vis[x]=0;
return false;
}
bool check(double mid){
int i,flag=0;
for(i=1;i<=n;++i)
d[i]=0,vis[i]=0;
for(i=1;i<=n;++i)
if(spfa(i,mid))
flag=1;
return flag;
}
int main(){
int x,y,i;double z;
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i){
scanf("%d%d%lf",&x,&y,&z),add(x,y,z);
}
double l=-1e6,r=1e6;
while(r-l>eps){
double mid=(l+r)/2;
if(check(mid)) r=mid;
else l=mid;
}
printf("%.8lf",l);
return 0;
}