【HNOI 2009】最小圈

传送门


Problem

给定一个有 n n n 个点 m m m 条边的有向图,边带权。在图中找到一个环,这个环上的边权平均值最小,求出这个最小值。

注意边权可以为负。

数据范围: n ≤ 3000 , m ≤ 10000 , ∣ w i , j ∣ ≤ 1 0 7 n≤3000,m≤10000,∣w_{i,j}∣≤10^7 n3000,m10000,wi,j107


Solution

很显然这是一道分数规划的题。

假设环上有 k k k 个点(也即有 k k k 条边),且边权分别 w 1 , w 2 , . . . , w k w_1,w_2,...,w_k w1,w2,...,wk。那我们就是要让 ∑ i = 1 k w i k \frac{\sum_{i=1}^kw_i}{k} ki=1kwi 最小。

设这个最小值为 λ λ λ,那对于图中任意一个环,都有 ∑ i = 1 k ′ w i k ′ ≥ λ \frac{\sum_{i=1}^{k'}w_i}{k'}≥\lambda ki=1kwiλ

那稍微化简一下就是 ∑ i = 1 k ′ w i − k ′ λ ≥ 0 \sum_{i=1}^{k'}w_i-k'\lambda≥0 i=1kwikλ0,也即 ∑ i = 1 k ′ ( w i − λ ) ≥ 0 \sum_{i=1}^{k'}(w_i-\lambda)≥0 i=1k(wiλ)0

于是我们二分答案,令 m i d mid mid 为当前的二分值,将所有的边权变为 w i − m i d w_i-mid wimid。可以发现,当图中出现负环时, m i d > λ mid>\lambda mid>λ,应当将 m i d mid mid 调小;反之应将 m i d mid mid 调大。

**注意:**这道题卡 b f s bfs bfs 版的写法,要写成 d f s dfs dfs 版才能过。


Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50005
#define eps 1e-10
using namespace std;
int n,m,t;
int first[N],v[N],nxt[N],vis[N];
double w[N],d[N];
void add(int x,int y,double z){
	nxt[++t]=first[x],first[x]=t,v[t]=y,w[t]=z;
}
bool spfa(int x,double mid){
	vis[x]=1;
	for(int i=first[x];i;i=nxt[i]){
		int to=v[i];
		double len=w[i]-mid;
		if(d[to]>d[x]+len){
			d[to]=d[x]+len;
			if(vis[to]||spfa(to,mid))  return true;
		}
	}
	vis[x]=0;
	return false;
}
bool check(double mid){
	int i,flag=0;
	for(i=1;i<=n;++i)
		d[i]=0,vis[i]=0;
	for(i=1;i<=n;++i)
		if(spfa(i,mid))
			flag=1;
	return flag;
}
int main(){
	int x,y,i;double z;
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;++i){
		scanf("%d%d%lf",&x,&y,&z),add(x,y,z);
	}
	double l=-1e6,r=1e6;
	while(r-l>eps){
		double mid=(l+r)/2;
		if(check(mid))  r=mid;
		else  l=mid;
	}
	printf("%.8lf",l);
	return 0;
}
根据引用\[1\]和引用\[2\]的描述,题目中的影魔拥有n个灵魂,每个灵魂有一个战斗力ki。对于任意一对灵魂对i,j (i<j),如果不存在ks (i<s<j)大于ki或者kj,则会为影魔提供p1的攻击力。另一种情况是,如果存在一个位置k,满足ki<c<kj或者kj<c<ki,则会为影魔提供p2的攻击力。其他情况下的灵魂对不会为影魔提供攻击力。 根据引用\[3\]的描述,我们可以从左到右进行枚举。对于情况1,当扫到r\[i\]时,更新l\[i\]的贡献。对于情况2.1,当扫到l\[i\]时,更新区间\[i+1,r\[i\]-1\]的贡献。对于情况2.2,当扫到r\[i\]时,更新区间\[l\[i\]+1,i-1\]的贡献。 因此,对于给定的区间\[l,r\],我们可以根据上述方法计算出区间内所有下标二元组i,j (l<=i<j<=r)的贡献之和。 #### 引用[.reference_title] - *1* *3* [P3722 [AH2017/HNOI2017]影魔(树状数组)](https://blog.csdn.net/li_wen_zhuo/article/details/115446022)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [洛谷3722 AH2017/HNOI2017 影魔 线段树 单调栈](https://blog.csdn.net/forever_shi/article/details/119649910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值