【HDU 4336】Card Collector

传送门


Problem

n n n 种卡牌,买一包零食有 p i p_i pi 的概率抽到第 i i i 张卡,求集齐所有卡的期望次数。每包零食最多有一张卡,可以没有卡。

数据范围: n ≤ 20 n\le20 n20


Solution

一道简单的 min-max 容斥题,也可以用期望概率 d p dp dp做。

m a x ( S ) max(S) max(S) S S S 中集齐所有卡的期望时间, m i n ( S ) min(S) min(S) S S S 中获得第一张卡的期望时间。

m a x ( S ) max(S) max(S) 看起来不好求,但是 m i n ( S ) min(S) min(S) 就很显然了:

m i n ( S ) = 1 ∑ i ∈ S p i min(S)=\frac{1}{\sum_{i\in S}p_i} min(S)=iSpi1

根据 min-max 容斥,我们可以得到:

m a x ( S ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − 1 m i n ( T ) max(S)=\sum_{T\subseteq S}(-1)^{|T|-1}min(T) max(S)=TS(1)T1min(T)

那我们枚举 S S S 的每个子集计算即可,时间复杂度 O ( 2 n ) O(2^n) O(2n)

注意一下这道题有 spj,不用只输出后三位,而且只输出后三位会 WA


Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 25
#define eps 1e-8
using namespace std;
int n;
double ans,p[N];
void dfs(int x,int tot,double sum){
	if(x>n){
		if(sum<eps)  return;
		if(tot&1)  ans+=1.0/sum;
		else  ans-=1.0/sum;
		return;
	}
	dfs(x+1,tot,sum);
	dfs(x+1,tot+1,sum+p[x]);
}
int main(){
	while(~scanf("%d",&n)){
		for(int i=1;i<=n;++i)
			scanf("%lf",&p[i]);
		ans=0,dfs(1,0,0);
		printf("%lf\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值