Problem
有 n n n 种卡牌,买一包零食有 p i p_i pi 的概率抽到第 i i i 张卡,求集齐所有卡的期望次数。每包零食最多有一张卡,可以没有卡。
数据范围: n ≤ 20 n\le20 n≤20。
Solution
一道简单的 min-max 容斥题,也可以用期望概率 d p dp dp做。
记 m a x ( S ) max(S) max(S) 为 S S S 中集齐所有卡的期望时间, m i n ( S ) min(S) min(S) 为 S S S 中获得第一张卡的期望时间。
m a x ( S ) max(S) max(S) 看起来不好求,但是 m i n ( S ) min(S) min(S) 就很显然了:
m i n ( S ) = 1 ∑ i ∈ S p i min(S)=\frac{1}{\sum_{i\in S}p_i} min(S)=∑i∈Spi1
根据 min-max 容斥,我们可以得到:
m a x ( S ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − 1 m i n ( T ) max(S)=\sum_{T\subseteq S}(-1)^{|T|-1}min(T) max(S)=T⊆S∑(−1)∣T∣−1min(T)
那我们枚举 S S S 的每个子集计算即可,时间复杂度 O ( 2 n ) O(2^n) O(2n)。
注意一下这道题有 spj,不用只输出后三位,而且只输出后三位会 WA。
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 25
#define eps 1e-8
using namespace std;
int n;
double ans,p[N];
void dfs(int x,int tot,double sum){
if(x>n){
if(sum<eps) return;
if(tot&1) ans+=1.0/sum;
else ans-=1.0/sum;
return;
}
dfs(x+1,tot,sum);
dfs(x+1,tot+1,sum+p[x]);
}
int main(){
while(~scanf("%d",&n)){
for(int i=1;i<=n;++i)
scanf("%lf",&p[i]);
ans=0,dfs(1,0,0);
printf("%lf\n",ans);
}
return 0;
}