POJ3140:Contestants Division(DFS,树形DP)

本文介绍了一种特殊ACM-ICPC区域竞赛的组织方式,由于成本限制,信息只能通过一条不重复经过同一大学的路径传递。题目要求将参赛者分为两个相连的区域,使得两个区域的学生数量差最小。输入包含多组测试用例,每组用例给出大学数量、通信线路数及每个大学的学生数量,输出最小的学生数量差。
摘要由CSDN通过智能技术生成
Contestants Division
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 6947 Accepted: 1961

Description

In the new ACM-ICPC Regional Contest, a special monitoring and submitting system will be set up, and students will be able to compete at their own universities. However there’s one problem. Due to the high cost of the new judging system, the organizing committee can only afford to set the system up such that there will be only one way to transfer information from one university to another without passing the same university twice. The contestants will be divided into two connected regions, and the difference between the total numbers of students from two regions should be minimized. Can you help the juries to find the minimum difference?

Input

There are multiple test cases in the input file. Each test case starts with two integers N and M, (1 ≤ N ≤ 100000, 1 ≤ M ≤ 1000000), the number of universities and the number of direct communication line set up by the committee, respectively. Universities are numbered from 1 to N. The next line has N integers, the Kth integer is equal to the number of students in university numbered K. The number of students in any university does not exceed 100000000. Each of the following M lines has two integers st, and describes a communication line connecting university s and university t. All communication lines of this new system are bidirectional.

N = 0, M = 0 indicates the end of input and should not be processed by your program.

Output

For every test case, output one integer, the minimum absolute difference of students between two regions in the format as indicated in the sample output.

Sample Input

7 6
1 1 1 1 1 1 1
1 2
2 7
3 7
4 6
6 2
5 7
0 0

Sample Output

Case 1: 1

Source

MYCode:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
typedef long long LL;
using namespace std;
#define MAX 100010
//#define inf 100000000
struct node
{
    int v;
    int next;
}E[1000010];
bool vis[MAX];
LL sum[MAX];
int head[MAX];
LL v[MAX];
int num;
int n,m;
LL tot;
LL ans;
void init()
{
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    num=0;
}
void add(int s,int t)
{
    E[num].v=t;
    E[num].next=head[s];
    head[s]=num++;
}
void dfs(int cur)
{

    vis[cur]=1;
    int i;
    LL res;
    LL s=0;
    for(i=head[cur];i!=-1;i=E[i].next)
    {
        int v=E[i].v;
        if(vis[v])
        continue;
        dfs(v);
        s+=sum[v];
        res=abs((tot-sum[v])-sum[v]*1.0);
        //cout<<"res="<<res<<endl;
        if(res<ans)
        ans=res;
    }
    sum[cur]=s+v[cur];
    LL add=tot-sum[cur];
    res=abs((tot-add)-add*1.0);
    if(res<ans)
    {
        ans=res;
        //cout<<"res="<<res<<endl;
    }
}

int main()
{
    int ct=0;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(n==0&&m==0)
        break;
        init();
        int i;
        tot=0;
        for(i=1;i<=n;i++)
        {
            //scanf("%lld",&v[i]);
            cin>>v[i];
            tot+=v[i];
        }
        int s,t;
        for(i=1;i<=m;i++)
        {
            scanf("%d%d",&s,&t);
            add(s,t);
            add(t,s);
        }
        ans=tot;
        dfs(1);
        /*for(i=1;i<=n;i++)
        cout<<sum[i]<<" ";
        cout<<endl;*/
        //printf("%d\n",ans);
        cout<<"Case "<<++ct<<": "<<ans<<endl;
    }
}

//750MS

将原来的树划分后必然成为成为2棵树,其中一棵树是以原来树中的某个顶点为根的子树,所以可以在DFS过程枚举所有的顶点,找出最小值.

这道题应该还有更好的做法,动态规划的思路想不到.

750MS的效率,不是一个满意的答案.
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值