戴德金--连续性和无理数--我自己做的中文翻译第11页

既然加法已经定义,那么其他的基础运算就可以定义了。即,减、乘、除、乘方、根,对数,
这样我们就到了对加减乘除等这些基本运算的真正证明(如,(√2)⋅(√3)=(√6)),据我所知,这
些证明此前尚未建立。更复杂的运算定义会长的令人恐惧,虽然这些定义都是其固有的,但
是大部分是可以避免的。与之相关的一个非常有用的概念是区间,即,一个有理数组成的系
统A具有下面的特点,如果a和a′在A中,那么所有位于a和a′之间的有理数,都包含在A内。包
含 全 部 有 理 数 的 系 统 R 和 任 何 分 划 的 两 类 都 是 区 间 。 假 设 存 在 有 理 数 a 1 < A 含全部有理数的系统R和任何分划的两类都是区间。假设存在有理数a_{1}<A Ra1<A
内 的 所 有 数 , 存 在 有 理 数 a 2 > A 内 的 所 有 数 , 那 么 A 称 为 闭 区 间 。 可 知 , 存 内的所有数,存在有理数a_{2}>A内的所有数,那么A称为闭区间。可知,存 a2>AA
在 无 穷 多 这 样 的 a 1 和 a 2 ; 整 个 域 R 被 分 为 三 部 分 , A 1 , A , A 2 , 于 是 有 了 两 在无穷多这样的a_{1}和a_{2};整个域R被分为三部分,A_{1},A,A_{2},于是有了两 a1a2RA1AA2
个 数 字 , a 1 , a 2 , 既 可 以 是 有 理 数 , 也 可 以 是 无 理 数 , 称 为 区 间 的 下 限 和 上 个数字,a_{1},a_{2},既可以是有理数,也可以是无理数,称为区间的下限和上 a1a2
限 。 下 限 a 1 由 产 生 第 一 类 A 1 的 分 割 产 生 , 上 限 由 产 生 第 二 类 A 2 的 分 割 , 称 限。下限a_{1}由产生第一类A_{1}的分割产生,上限由产生第二类A_{2}的分割,称 a1A1A2
每 个 位 于 a 1 和 a 2 之 间 的 数 为 位 于 区 间 A 内 。 如 果 所 有 A 内 的 数 , 都 是 B 内 的 数 , 每个位于a_{1}和a_{2}之间的数为位于区间A内。如果所有A内的数,都是B内的数, a1a2AAB
称 A 为 B 的 一 部 分 。 称A为B的一部分。 AB
当 我 们 试 图 把 有 理 数 的 大 量 算 术 定 理 ( 如 乘 法 结 合 律 ( a + b ) c = a c + b c ) \quad\quad 当我们试图把有理数的大量算术定理(如乘法结合律(a+b)c=ac+bc) (a+b)c=ac+bc
应用于任意实数时,那些冗长的考虑就会冒出来。但是,实际并非如此。很容易看出,这些
操作都简化为某种连续性的体现。上述讨论可以归纳为下面的通用定理:
“ 若 数 字 λ 是 α , β , γ 等 数 字 运 算 的 结 果 , 且 λ 位 于 区 间 L 内 , 那 么 可 以 得 到 A , \quad\quad “若数字\lambda 是\alpha,\beta,\gamma等数字运算的结果,且\lambda位于区间L内,那么可以得到A, λα,β,γλLA
B , C 等 区 间 , 分 别 包 含 数 字 α , β , γ 等 数 字 , 这 样 , 这 些 数 字 的 运 算 , 转 为 区 B,C等区间,分别包含数字\alpha,\beta,\gamma等数字,这样,这些数字的运算,转为区 BCα,β,γ
间的运算,运算结果是区间L中的一个数字”。如此笨拙的过程,让我们不得不寻找一个方法简
化这些表达式。于是,无极变幅,函数,极限值,这些概念被引入。即使是最简单的算术运算
最好也建立在这些概念之上,这里不再深入讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值