深度学习 机器视觉 经典卷积神经网络 Tensorflow2.0 keras.applications

前言:
最近在学习深度学习时发现各类经典网络成为高频词,比如AlexNet、VGG、GoogLeNet、Inception、Xception、ResNet、MobileNet、SENet、CBAM、DenseNet、NASNet等等。快速整理了如下内容,为大家快速了解经典网络的结构特点提供一个参考。
由于博主能力有限,内容大多引自网络博客,并未严格考证如有错误之处望予以指出,后续也会逐步修正和补充一些实现后的代码。

背景

自2012至今近十年的深度学习发展中,机器视觉领域涌现了一大批性能突出的深度卷积神经网络结构。这些经典网络就好比我们在烹饪深度学习这道美食的不可获取的重要食材,了解并掌握不同结构的特点和基本原理,为我们活学活用卷积神经网络,快速应用于实践中,能够起到事半功倍的效果。
但由于大型神经网络规模巨大,个人电脑难以实现大规模数据集合的模型训练。Tensorflow.Keras.applications中便提供了不少基于ImageNet完成训练的经典网络模型和权值。基于大规模图像数据集训练的卷积神经网络被认为具有突出的图像特征提取的功能,被广泛应用于图像分类、语义分割、人脸识别和目标检测等实际场景中。
希望借此文,方便大家一窥经典深度卷积网络,并站在经典网络的肩膀上迅速开展自己的研究。

Keras.applications

如下,Keras官网提供了近二十组经典网络模型和权重参数。借此内容按照时间顺序展开进行介绍。
在这里插入图片描述
官网链接

VGG16

背景 (2014)

VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG名字的由来了)在2014年提出来的模型。当这个模型被提出时,由于它的简洁性和实用性,马上成为了当时最流行的卷积神经网络模型。它在图像分类和目标检测任务中都表现出非常好的结果。
VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)

网络结构

在这里插入图片描述
在这里插入图片描述
VGG16包含了16个隐藏层(13个卷积层和3个全连接层)
VGG网络的结构非常一致,从头到尾全部使用的是3x3的卷积和2x2的max pooling

结果

在这里插入图片描述

讨论

VGG优点

  • VGGNet的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。
  • 几个小滤波器(3x3)卷积层的组合比一个大滤波器(5x5或7x7)卷积层好
  • 验证了通过不断加深网络结构可以提升性能。

VGG缺点

VGG耗费更多计算资源,并且使用了更多的参数(这里不是3x3卷积的锅),导致更多的内存占用(140M)。其中绝大多数的参数都是来自于第一个全连接层。VGG可是有3个全连接层啊!

参考

论文:Very Deep Convolutional Networks for Large-Scale Image Recognition.
代码的github链接:https://github.com/liuzhuang13/DenseNet
参考博文: https://github.com/machrisaa/tensorflow-vgg

VGG19

网络结构

在这里插入图片描述
在这里插入图片描述
VGG19包含了19个隐藏层(16个卷积层和3个全连接层)

TF2.0代码复现

https://blog.csdn.net/Forrest97/article/details/106135431

参考

论文:Very Deep Convolutional Networks for Large-Scale Image Recognition.
参考博文: https://github.com/machrisaa/tensorflow-vgg

ResNet

背景(2015)

深度卷积网络在图像分类任务上取得了一系列突破。深度网络通过多层端到端的方式,集成了低中高三个层次的特征和分类器,并且这些特征的数量还可以通过堆叠层数来增加。在ImageNet数据集上获胜的网络揭示了网络深度的重要性。
随着网络层数的增加,训练的问题随之凸显。比较显著的问题有梯度消失/爆炸,这会在一开始就影响收敛。收敛的问题可以通过正则化来得到部分的解决。
在深层网络能够收敛的前提下,随着网络深度的增加,正确率开始饱和甚至下降,称之为网络的退化(degradation)问题。 示例可见Figure 1. 显然,56层的网络相对于20层的网络,不管是训练误差还是测试误差都显著增大。
在这里插入图片描述
很明显,这些退化并不是过拟合造成的。在给定的网络上增加层数会增大训练误差。 网络的退化说明不是所有的系统都很容易优化。考虑一个浅层的网络架构和在它基础上构建的深层网络,在极端条件下,如果增加的所有层都是前一层的直接复制(即y=x),这种情况下深层网络的训练误差应该和浅层网络相等。因此,网络退化的根本原因还是优化问题。 为了解决优化的难题,提出了残差网络。

网络结构

ResNet 通过在卷积层的输入和输出之间添加Skip Connection 实现层数回退机制,如下
图 所示,输入𝑥通过两个卷积层,得到特征变换后的输出ℱ(𝑥),与输入𝑥进行对应元
素的相加运算,得到最终输出
ℋ(𝑥) = 𝑥 + ℱ(𝑥)
ℋ(𝑥)叫做残差模块(Residual Block,ResBlock)。由于被Skip Connection 包围的卷积神经网络需要学习映射ℱ(𝑥) = ℋ(𝑥) − 𝑥,故称为残差网络。
在这里插入图片描述
为了能够满足输入𝑥与卷积层的输出ℱ(𝑥)能够相加运算,需要输入𝑥的shape 与ℱ(𝑥)的shape 完全一致。当出现shape 不一致时,一般通过在Skip Connection 上添加额外的卷积运算环节将输入𝑥变换到与ℱ(𝑥)相同的shape,如图 10.63 中identity(𝑥)函数所示,其中identity(𝑥)以1x1 的卷积运算居多,主要用于调整输入的通道数。
下图 对比了34 层的深度残差网络、34 层的普通深度网络以及19 层的VGG 网络结构。可以看到,深度残差网络通过堆叠残差模块,达到了较深的网络层数,从而获得
了训练稳定、性能优越的深层网络。
在这里插入图片描述
在这里插入图片描述

结果

分别使用18层的plain nets和34层的plain nets,结果显示34层的网络有更高的验证误差。下图比较了整个过程的训练和测试误差:
在这里插入图片描述
注:细实线代表训练误差,粗实线代表验证误差。左侧为plain nets,右侧为ResNet。 这种优化上的困难不是由于梯度消失造成的,因为在网络中已经使用了BN,保证了前向传播的信号有非零的方差。猜想深层的神经网络的收敛几率随着网络层数的加深,以指数的形式下降,导致训练误差很难降低
测试18层和34层的ResNet。注意到34层的训练和测试误差都要比18层的小。这说明网络退化的问题得到了部分解决,通过加深网络深度,可以提高正确率。注意到18层的plain net和18层的ResNet可以达到相近的正确率,但是ResNet收敛更快。这说明网络不够深的时候,SGD还是能够找到很好的解。

Identity vs. Projection Shortcuts
比较了三种选择:
(A)zero-padding shortcuts用来增加维度(Residual block的维度小于输出维度时,使用0来进行填充),所有的shortcut无参数。
(B)projection shortcuts用来增加维度(维度不一致时使用),其他的shortcut都是恒等映射(identity)类型。
(C)所有的shortcut都是使用projection shortcuts。

在这里插入图片描述
结果表明,这三种选择都有助于提高正确率。其中,B比A效果好,原因可能是A中zero-padded的维度没有使用残差学习。C比B效果好,原因可能是projection shortcuts中引入的参数。但是ABC中的结果表明,projection shortcuts对于解决网络的退化问题是没有作用的,对于正确率的提升作用也十分有限。所以,从减少模型参数,降低复杂度的角度考虑,使用Identity shortcuts就已经足够了。

Deeper Bottleneck Architectures.
在探究更深层网络性能的时候,处于训练时间的考虑,我们使用bottleneck design的方式来设计building block。对于每一个残差函数FF,使用一个三层的stack代替以前的两层。这三层分别使用1×1, 3×3, 和 1×1的卷积。其中,1×1卷积用来降维然后升维,即利用1×1卷积解决维度不同的问题。3×3对应一个瓶颈(更少的输入、输出维度)。Fig.5 展示了这种设计。
在这里插入图片描述
50、101和152层的ResNet相对于32层网络有更高的准确率。Table3和4中给出了测试结果。
在这里插入图片描述

讨论

ResNet和Highway Network的思路比较类似,都是将部分原始输入的信息不经过矩阵乘法和非线性变换,直接传输到下一层。这就如同在深层网络中建立了许多条信息高速公路。ResNet通过改变学习目标,即不再学习完整的输出F(x),而是学习残差H(x)−x,解决了传统卷积层或全连接层在进行信息传递时存在的丢失、损耗等问题。通过直接将信息从输入绕道传输到输出,一定程度上保护了信息的完整性。同时,由于学习的目标是残差,简化了学习的难度。根据Schmidhuber教授的观点,ResNet类似于一个没有gates的LSTM网络,即旁路输入x一直向之后的层传递,而不需要学习。有论文表示,ResNet的效果类似于对不同层数网络进行集成方法。

TF2.0代码复现

https://blog.csdn.net/Forrest97/article/details/106136435

参考

论文:Deep Residual Learning for Image Recognition.
参考博文: https://blog.csdn.net/csdnldp/article/details/78313087
何恺明主页:http://kaiminghe.com/

InceptionV3

背景 (2015)

GoogLeNet
Going deeper with convolutions论文中,作者提出一种深度卷积神经网络 Inception,它在 ILSVRC14 中达到了当时最好的分类和检测性能。该架构的主要特点是更好地利用网络内部的计算资源,这通过一个精心制作的设计来实现,该设计允许增加网络的深度和宽度,同时保持计算预算不变。为了优化质量,架构决策基于赫布原则和多尺度处理。作者向 ILSVRC14 提交使用该架构的模型即 GoogLeNet,这是一个 22 层的深度网络,它的质量是在分类和检测领域进行了评估。
为什么不在同一层级上运行具备多个尺寸的滤波器呢?网络本质上会变得稍微「宽一些」,而不是「更深」。作者因此设计了 Inception 模块。
下图是「原始」Inception 模块。它使用 3 个不同大小的滤波器(1x1、3x3、5x5)对输入执行卷积操作,此外它还会执行最大池化。所有子层的输出最后会被级联起来,并传送至下一个 Inception 模块。

  • 10
    点赞
  • 76
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
tensorflow.keras.applications.vgg16模块提供了VGG16模型的预训练版本。VGG16是一个经典卷积神经网络模型,由Karen Simonyan和Andrew Zisserman于2014年提出。它在ImageNet数据集上取得了很好的性能,并成为了深度学习图像分类任务的重要基准模型之一。 使用tensorflow.keras.applications.vgg16可以加载VGG16模型的预训练权重,并进行图像分类任务。下面是一个加载VGG16模型并进行图像分类的示例: ```python from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions from tensorflow.keras.preprocessing import image import numpy as np # 加载VGG16模型(不包括顶部的全连接层) model = VGG16(weights='imagenet', include_top=False) # 载入并预处理图像 img_path = 'path/to/your/image.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # 使用VGG16模型进行预测 features = model.predict(x) # 解码预测结果 decoded_predictions = decode_predictions(features, top=3)[0] for pred_class in decoded_predictions: print(pred_class[1], pred_class[2]) ``` 以上示例代码中,我们首先加载了VGG16模型,并指定了使用ImageNet数据集上预训练的权重。然后,我们加载了待预测的图像,并进行了预处理,包括调整尺寸和归一化。接下来,使用VGG16模型对图像进行预测,并通过decode_predictions函数解码预测结果,输出前三个最可能的类别标签和对应的概率。 需要注意的是,VGG16模型的输入尺寸为224x224像素的RGB图像。在使用该模型进行预测时,需要将输入图像调整为相应的尺寸,并进行适当的预处理操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值