假期看得到的数字产业课程,看到如题的这么一句话,比较有共鸣,分享一下。
文章里讲的是自动驾驶,自这个概念诞生那天起,我们就一直在讨论的一个“电车难题”:
一列失控的电车,马上要撞上轨道上的5个人,但是你可以选择扳动道岔,让电车转到另一条铁轨上,那条铁轨上只有1个人,请问你扳还是不扳?
在现代社会,我们更经常遇到的场景是:
汽车失控,眼看就要撞上行人,如果紧急转向,车子可能冲进路边的悬崖。那么,自动驾驶会怎么选,是优先保护乘客而撞向行人,还是优先保护行人而让乘客陷入危险?
上述两个问题,其实都是伦理道德问题,并不是技术问题,从技术角度,无论做什么选择,都不是一件很困难的事情。
但是伦理和道德问题,如果没有立法,其实是没有标准的。
所以,从一开始,我们就陷入到一个思维模式的怪圈里:
希望通过技术这种确定性的手段,去解决一个没有标准答案的伦理问题。
显然是无解的。(我还曾经琢磨过,现在看看,真的是人类一琢磨,上帝就发笑。)
所以作者换了一个思路来应对这种问题,就是如题的方法:技术带来的问题,就让技术来解决。
比如,我们是否能提前在距离危险300、500米时就减速,刹车,或可以提前提示行人注意安全,遵守交规,以此来规避这种问题,不要跟伦理道德扯到一起。
做到这一点,单车智能模式下,需要有更多的、更敏感的传感器,比如精度更高的毫米波雷达、超声和激光雷达,更全方位的超清摄像头。
单车智能只能做到范围有限的路况判断,如果有“车联网”和“车路协同”这种更系统化的方案,能够把更大范围内的路况信息提前处理好,并反馈给单车,那“电车难题”就有更大的应对空间了。
从技术上讲,目前的5G和AI算力都已经不是问题,未来需要的是更多复杂场景的深度学习算法的完善,这依赖于数据的积累和训练,同时,还有更低成本的解决方案。
所以,技术带来的问题,就让技术来解决,用这个思路再来看“电车难题”,解决方案才是最优的。
其实,我们应对日常的问题,也应该遵循一个“谁的问题,谁解决”,问题要有主体。
手段和资源可以是多样化的,但是“谁”这个关键,是要想清楚的。