AIOps做根因定位靠不靠谱?

本文从与浙江移动的讨论出发,分析了AIOps在根因定位上的局限性,提出AIOps更适用于故障感知和预测。AIOps、DevOps与SRE的关系被阐述为AI发现问题,SRE通过Ops和Dev手段解决。同时指出,运维工作仍需要具备经验和技术的新型SRE,而非完全被机器替代。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨晚跟浙江移动晓征总畅谈很久,从狭义AIOps做根因分析引出,聊了AIOps的作用,跟SRE的关系,实践的总结,有很多共鸣,也碰撞出很多有意思的观点。

结合晓征总整理的,和我记录的,形成一篇文章,算是抛砖引玉,在AIOps经历了几年实践的基础上,再次探讨下AIOps这个话题。

以下是正文:

和兄弟们和以及江湖上的专家研讨了一番,居然哭笑不得地得出一个初步结论,抛抛砖:狭义上的AIOps存在严重泡沫

几个观点:

第一、靠AIOps做根因定位靠不靠谱?

AI无论基于机器学习还是深度学习,都依赖于大量的数据。但运维场景往往需要从一次故障中汲取改进的力量,而这个是典型的小数据量建模,需要大量的常识、经验,需要用到归纳和演绎能力,而这些恰恰是人类的优势,现阶段的AI还难以支撑。

所以,实践中,在故障时,再依赖什么AIOps做根因定位,实践中没有成功过。原因也不难理解,因为每次故障的原因,都会跟之

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值