【leetcode】Median of Two Sorted Arrays※※※※※

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

class Solution {
public:
    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        
    }
};



找两个已经排序的数组中的中间大小的元素,也就是第(m+n)/2 大的元素,

对于求第几大的元素,如何是一般的数组,可以直接使用 算法导论中的求顺序统计量的方法,使用分治法,并且使用类似于快速排序中的random-partition,返回一个第q小的数。

PS:快速排序中的,partition本来就是一个良好的顺序统计量的思考方式。


如果题目中要求的是O(m+n):

则是两个已经排好的序列,有个很自然的思路就是分治法——的merge方法这些都是线性方法。


但是这里要求的是O(log(m+n))   ——比较容易联想到的是快速排序的O(logn)。

而且里面两个数组是有序的,要充分利用先验的条件——类似于二分查找——时间复杂度也是O(logn)

坐不到满足条件的算法啊!!!!!!


最后从medianof two sorted arrays中看到了一种非常好的方法。原文用英文进行解释,在此我们将其翻译成汉语。该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。

首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。

证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。

当A[k/2-1]>B[k/2-1]时存在类似的结论。

当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:

  • 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
  • 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
  • 如果A[k/2-1]=B[k/2-1],返回其中一个;

class Solution {
public:
	double findMedianSortedArrays(int A[], int m, int B[], int n) {
		//根据m+n的情况要分奇数和偶数,因为奇数的中位数是中间数,
		//偶数的中位数是,中间两个数的和的1/2
		int sum=m+n;
		if(sum&0x1){
			return findkthnum(A, m, B, n, sum/2 + 1);
		}else{
			return (findkthnum(A, m, B, n, sum/2)+findkthnum(A,m,B,n,sum/2+1))/2;
		}
	}
private:
	double findkthnum(int a[],int m,int b[],int n,int k);
};

double Solution::findkthnum(int a[],int m,int b[],int n,int k)
{
	if (m>n)//总是让m<=n
		return findkthnum(b,n,a,m,k);
	if (0==m)//如果较短的数组数组长度为0
		return b[k-1];
	if (k==1)
		return min(a[0],b[0]);
	//将k划分成两个部分
	int pa=min(k/2,m);
	int pb=k-pa;
	//如果a长度>b长度
	if(a[pa-1]<b[pb-1]){
		return findkthnum(a+pa,m-pa,b,n,k-pa);
	}else if (a[pa-1]==b[pb-1]){//两者相等的时候,则
		 return a[pa - 1];  
	}else{//a[k/2-1]<b[k/2-1]
		return findkthnum(a, m, b + pb, n - pb, k - pb);  
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值