There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
class Solution {
public:
double findMedianSortedArrays(int A[], int m, int B[], int n) {
}
};
找两个已经排序的数组中的中间大小的元素,也就是第(m+n)/2 大的元素,
对于求第几大的元素,如何是一般的数组,可以直接使用 算法导论中的求顺序统计量的方法,使用分治法,并且使用类似于快速排序中的random-partition,返回一个第q小的数。
PS:快速排序中的,partition本来就是一个良好的顺序统计量的思考方式。
如果题目中要求的是O(m+n):
则是两个已经排好的序列,有个很自然的思路就是分治法——的merge方法这些都是线性方法。
但是这里要求的是O(log(m+n)) ——比较容易联想到的是快速排序的O(logn)。
而且里面两个数组是有序的,要充分利用先验的条件——类似于二分查找——时间复杂度也是O(logn)
坐不到满足条件的算法啊!!!!!!
最后从medianof two sorted arrays中看到了一种非常好的方法。原文用英文进行解释,在此我们将其翻译成汉语。该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。
首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。
证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。
当A[k/2-1]>B[k/2-1]时存在类似的结论。
当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)
通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:
- 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
- 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
- 如果A[k/2-1]=B[k/2-1],返回其中一个;
class Solution {
public:
double findMedianSortedArrays(int A[], int m, int B[], int n) {
//根据m+n的情况要分奇数和偶数,因为奇数的中位数是中间数,
//偶数的中位数是,中间两个数的和的1/2
int sum=m+n;
if(sum&0x1){
return findkthnum(A, m, B, n, sum/2 + 1);
}else{
return (findkthnum(A, m, B, n, sum/2)+findkthnum(A,m,B,n,sum/2+1))/2;
}
}
private:
double findkthnum(int a[],int m,int b[],int n,int k);
};
double Solution::findkthnum(int a[],int m,int b[],int n,int k)
{
if (m>n)//总是让m<=n
return findkthnum(b,n,a,m,k);
if (0==m)//如果较短的数组数组长度为0
return b[k-1];
if (k==1)
return min(a[0],b[0]);
//将k划分成两个部分
int pa=min(k/2,m);
int pb=k-pa;
//如果a长度>b长度
if(a[pa-1]<b[pb-1]){
return findkthnum(a+pa,m-pa,b,n,k-pa);
}else if (a[pa-1]==b[pb-1]){//两者相等的时候,则
return a[pa - 1];
}else{//a[k/2-1]<b[k/2-1]
return findkthnum(a, m, b + pb, n - pb, k - pb);
}
}