# 基于tensorflow的简单BP神经网络的结构搭建

tensorflow的构建封装的更加完善，可以任意加入中间层，只要注意好维度即可，不过numpy版的神经网络代码经过适当地改动也可以做到这一点，这里最重要的思想就是层的模型的分离。

import tensorflow as tf
import numpy as np

Weights = tf.Variable(tf.random_normal([inSize,outSize]))
basis = tf.Variable(tf.zeros([1,outSize])+0.1)
weights_plus_b = tf.matmul(inputData,Weights)+basis
if activity_function is None:
ans = weights_plus_b
else:
ans = activity_function(weights_plus_b)
return ans

x_data = np.linspace(-1,1,300)[:,np.newaxis] # 转为列向量
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data)+0.5+noise

xs = tf.placeholder(tf.float32,[None,1]) # 样本数未知，特征数为1，占位符最后要以字典形式在运行中填入
ys = tf.placeholder(tf.float32,[None,1])

loss = tf.reduce_mean(tf.reduce_sum(tf.square((ys-l2)),reduction_indices = [1]))#需要向相加索引号，redeuc执行跨纬度操作

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

for i in range(10000):
sess.run(train,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
print sess.run(loss,feed_dict={xs:x_data,ys:y_data})


02-04
08-29 1万+
11-21 11万+
11-01 858
05-14 3324
08-15 2773
11-17 419
11-26 2193
08-05 126