人工智能导论习题(4)

4.1 什么是不确定性推理?有哪几类不确定性推理方法?不确定性推理中需要解决的基本问题有哪些?

不确定性推理是指在不确定性的初始证据出发,通过运用不确定性的知识,推出具有一定程度的不确定性但却合理或近乎合理的结论的思维过程。它在人工智能和专家系统中占有重要地位,因为现实世界中存在大量的不确定性信息。

### 不确定性推理方法的分类
不确定性推理方法主要分为以下几类:
1. **概率方法**:基于概率论,包括经典概率方法、贝叶斯方法等。
2. **可信度方法**:由Shortliffe提出,结合概率论发展而来,优点是直观、简单且效果好。
3. **证据理论**:基于概率论的不确定性推理方法之一。
4. **模糊推理方法**:依据模糊理论发展而来,广泛应用于专家系统、信息处理、自动控制等领域。

### 不确定性推理中需要解决的基本问题
1. **不确定性的表示与量度**:如何表示和度量不确定性知识及证据。
2. **不确定性匹配算法及阈值的选择**:计算匹配双方相似程度的算法以及确定相似的限度。
3. **组合证据不确定性的算法**:如何处理一个复合条件包含的一组证据的不确定性。
4. **不确定性的传递算法**:在推理过程中如何传递证据及知识的不确定性。
5. **结论不确定性的合成**:当用不同的知识推理得到相同结论但不确定性程度不同时,如何合成结论的不确定性。

这些基本问题涉及到不确定性的表示、计算、传递和合成等多个方面,是进行有效不确定性推理的关键。

4.2 什么是可信度?由可信度因子CF(H,E)的定义说明它的含义。

可信度(Credibility)是指人们根据以往的经验对某个事物或现象为真的程度的一个判断,或者说是人们对某个事物或现象为真的相信程度。在不确定性推理中,可信度因子(CF,Certainty Factor)用来表示一条知识的可信度或规则强度。可信度因子 \( CF(H,E) \) 的含义就是表示由于证据 \( E \) 的出现使结论 \( H \) 为真的可信度是增加了还是减少了。如果是增加了则 \( CF(H,E)>0 \) 并且 \( CF(H,E) \) 的值越大说明结论为真的可信度越大;相反如果证据 \( E \) 的出现使结论 \( H \) 为假的可信度增加了则使 \( CF(H,E)<0 \) 并且 \( CF(H,E) \) 的值越小说明结论为假的可信度越大;若证据的出现与否和 \( H \) 无关则使 \( CF(H,E)=0 \)。

求取问题结论可信度的步骤通常包括:
1. 计算前提证据事实总可信度值。
2. 根据规则推理结论的可信度值。
3. 若同一结论被不同的规则推出,则需要计算这些结论的可信度值的合成。

在处理不确定性推理时,可信度方法是一种重要的手段,它通过数值的方式来量化不确定性信息,并用于推理过程中得出较为合理的结论。

4.3简述求取问题结论可信度的步骤。

求取问题结论可信度的步骤通常包括以下几个关键环节:

1. **证据收集**:
   - 收集与问题相关的所有证据。

2. **证据不确定性表示**:
   - 对每个证据的不确定性进行量化,通常使用可信度因子 \( CF(E) \) 表示,取值范围为 \([-1, 1]\)。

3. **规则不确定性表示**:
   - 对于每条规则,确定其可信度因子 \( CF(H, E) \),表示在证据 \( E \) 出现时,结论 \( H \) 为真的可信度。

4. **证据与规则匹配**:
   - 将收集到的证据与规则的前提条件进行匹配,确定哪些证据支持哪些规则。

5. **不确定性传递**:
   - 根据匹配的规则,使用公式 \( CF(H) = CF(H, E) \times \max\{0, CF(E)\} \) 计算每个规则推出的结论的可信度。

6. **组合证据的不确定性**:
   - 如果有多个证据支持同一个结论,需要计算这些证据的组合可信度。对于证据的“合取”(AND),取最小值;对于证据的“析取”(OR),取最大值。

7. **结论不确定性合成**:
   - 如果多个规则推出了相同的结论,需要合成这些结论的可信度。合成的方法取决于结论的可信度是同向还是异向:
     - 同向(都是支持或都是反对):\( CF(H) = CF_1(H) + CF_2(H) - CF_1(H) \times CF_2(H) \)
     - 异向(一个是支持,一个是反对):\( CF(H) = \frac{|CF_1(H) - CF_2(H)|}{1 - |\min\{CF_1(H), CF_2(H)\}|} \)

8. **最终结论**:
   - 根据上述步骤计算得到的可信度值,确定最终结论的可信度。

9. **结果解释**:
   - 对计算出的结论可信度进行解释,以确定结论的可信程度。

这些步骤涉及到不确定性的表示、计算、传递和合成,是进行有效不确定性推理的关键。
 

4.4说明概率分配函数、信任函数、似然函数的含义。

概率分配函数、信任函数和似然函数是不确定性推理中的重要概念,尤其在D-S(Dempster-Shafer)证据理论中扮演核心角色。

1. **概率分配函数(Mass Function)**:
   概率分配函数是D-S证据理论中用于描述一个框架(框架是所有可能假设的集合)中不确定性的方法。它将框架中的每一个子集映射到一个介于0和1之间的数值,表示对该子集的相信程度。特别地,对于空集的概率分配值为0,对于整个框架的概率分配值为1。概率分配函数满足所有子集概率之和等于1的条件。

2. **信任函数(Belief Function)**:
   信任函数是基于概率分配函数定义的,用于衡量某个假设为真的信任程度。对于一个给定的假设A,信任函数Bel(A)是所有A的子集的概率分配值之和,即Bel(A) = ∑B⊆Am(B),其中m(B)是概率分配函数的值。

3. **似然函数(Plausibility Function)**:
   似然函数衡量的是对某个假设不为假的信任程度。对于一个给定的假设A,似然函数Pl(A)是所有与A相交的子集的概率分配值之和,即Pl(A) = ∑B∩A≠∅m(B)。它表示的是不否认A的信任度,即所有与A相交的子集的基本概率分配之和。

这三个函数一起构成了D-S证据理论的核心,用于处理和推理不确定性信息。通过这些函数,可以将分散的证据合并,并推导出结论的不确定性度量。

4.5概率分配函数与概率相同吗?为什么?

概率分配函数(Mass Function)与经典概率理论中的概率概念不完全相同。它们之间的主要区别在于:

1. **概率分配函数**:
   - 在D-S证据理论中使用,它可以为一个框架(识别框架)内的任何子集分配一个概率值,而不仅仅是单个元素。
   - 它允许将概率值分配给一个框架的组合(多个元素的组合),这反映了对这些组合的整体信任程度。
   - 概率分配函数的值不需要为单个元素分配,它可以表示对一个假设的不确定性或对多个假设的分散信任。

2. **经典概率**:
   - 在概率论中使用,它为随机事件分配一个介于0和1之间的实数,表示该事件发生的可能性。
   - 它通常用于表示单个事件的概率,而不是事件的组合。
   - 经典概率必须满足所有可能事件的概率之和等于1的条件。

**为什么不同**:
- **概率分配函数**可以为框架的子集分配非零值,包括单个元素的子集和多个元素的组合子集。这允许它表达对一个假设的不确定性或对多个假设的信任。
- **经典概率**通常只为单个事件分配值,而不直接为事件的组合分配值。它关注的是单个事件的概率,而不是它们的组合。

**例子**:
假设有一个框架{A, B, C},表示三种可能的情况。在经典概率论中,我们可能会说P(A)=0.3,P(B)=0.5,P(C)=0.2,这些值表示各自事件发生的概率,并且它们加起来等于1。

在D-S证据理论中,我们可能会有一个概率分配函数m,它分配的值如下:
- m(A) = 0.3,表示对A的信任程度。
- m(B) = 0.5,表示对B的信任程度。
- m(AB) = 0.1,表示对A和B同时发生的信任程度。
- m(空集) = 0,因为没有证据支持任何假设都不成立。
- m(框架) = 0.1,表示对整个框架的不确定性。

在这个例子中,m(AB)的值表示对A和B同时发生的信任,这是经典概率论中不直接表示的。同时,概率分配函数的值之和不一定等于1,而是所有非空子集的概率分配函数值之和等于1。

因此,概率分配函数提供了一种更灵活的方式来表达和处理不确定性,特别是在涉及多个假设和它们的组合时。
 

4.6如何用 D-S证据理论描述假设、规则和证据的不确定性,并实现不确定性的推理和组合?

D-S证据理论(Dempster-Shafer Theory)是一种处理不确定性问题的数学模型,它提供了一种不同于传统概率论的方法来描述和推理不确定性信息。以下是如何使用D-S证据理论来描述假设、规则和证据的不确定性,并实现不确定性的推理和组合:

1. **定义识别框架**:
   识别框架(Frame of Discernment)是D-S理论的基础,它包含了所有可能的假设或结论,这些假设是互斥的,即在任何情况下只有一个假设是正确的。

2. **基本概率分配(Basic Probability Assignment, BPA)**:
   BPA是D-S理论中的核心概念,它将概率值分配给识别框架的子集,而不是单个假设。这些概率值(称为mass值)表示支持相应假设的证据的可信度。

3. **信任函数(Belief Function)**:
   信任函数Bel(A)用于表示在给定证据下,假设A为真的信任程度。它是所有包含A的子集的BPA值之和。

4. **似然函数(Plausibility Function)**:
   似然函数Pl(A)表示假设A为真的最大可能性,计算为1减去信任函数Bel(A的补集),即Pl(A) = 1 - Bel(A的补集)。

5. **Dempster's Rule of Combination**:
   当有多个证据源时,Dempster's Rule提供了一种合并这些证据的方法。它通过计算两个或多个独立证据的BPA的交集来产生一个新的BPA,从而实现不确定性的组合。

6. **不确定性推理**:
   使用D-S理论进行推理时,可以从给定的证据出发,通过信任函数和似然函数来评估不同假设的可信度,并使用Dempster's Rule来合并多个证据源的信息。

7. **处理冲突和不确定性**:
   当证据之间存在冲突时,D-S理论允许部分信任度不被分配给任何假设,从而表示不确定性。

D-S证据理论在处理不确定性和模糊性方面具有优势,尤其是在证据冲突较小的情况下。然而,当证据之间存在高冲突时,可能需要考虑其他的组合规则或对证据进行预处理以避免错误结论 。
 

4.7什么是模糊性?它与随机性有什么区别?试举出几个日常生活中的模糊概念。

模糊性是指事物的界限不清晰、不明确,或者事物的属性、状态难以用传统的二元逻辑(如是/非,真/假)来精确描述的特性。模糊性通常涉及到中间状态、不确定性和部分真相。

**与随机性的区别**:
1. **随机性**:
   - 随机性是指事件的结果具有不确定性,但在统计意义上有可预测的概率分布。
   - 随机事件的结果虽然无法预测,但多次重复实验后,其结果的分布是有规律的。
   - 随机性通常与概率论相关,可以用概率模型来描述。

2. **模糊性**:
   - 模糊性是指概念或类别的界限不明确,难以用精确的数值或类别来描述。
   - 模糊性不涉及概率分布,而是涉及到事物的属性或状态的不确定性。
   - 模糊性可以通过模糊逻辑来描述,模糊逻辑允许事物具有中间的真值,如“有点真”或“非常假”。

**日常生活中的模糊概念**:
1. **年轻**:一个人多大年龄算作“年轻”?这个概念因人而异,没有明确的年龄界限。
2. **高个子**:多高的身高算作“高个子”?这个标准在不同的文化和地区可能有所不同。
3. **漂亮**:美丽是一个主观的评价,不同的人可能对“漂亮”有不同的理解。
4. **好天气**:什么样的天气算作“好天气”?晴朗、多云还是小雨?这取决于个人偏好和活动计划。
5. **健康饮食**:什么是“健康饮食”?这个概念可能包括多种食物和饮食习惯,没有统一的标准。
6. **大家庭**:家庭规模多大算作“大家庭”?这个定义可能因文化、地区和个人观念而异。

模糊性在人类语言和思维中非常常见,因为现实世界中的许多概念和现象并不总是黑白分明的。模糊逻辑和模糊系统为我们提供了一种处理这种模糊性的工具。
 

4.8 模糊推理的一般过程是什么?

模糊推理是一种基于模糊逻辑的推理方法,它允许系统在不确定性和模糊性的情况下进行决策。模糊推理的一般过程包括以下几个步骤:

1. **模糊化(Fuzzification)**:
   - 将 crisp(非模糊)输入数据转换为模糊值。这通常涉及到将数值输入转换为模糊集合的隶属度。
   - 例如,如果输入是一个温度值,模糊化过程可能会将这个值转换为“低”、“中”、“高”等模糊集合的隶属度。

2. **规则评估(Rule Evaluation)**:
   - 应用模糊逻辑规则来评估模糊化的输入。
   - 每个规则通常有形式:“如果 X 是 A 那么 Y 是 B”,其中 X 和 Y 是变量,A 和 B 是模糊集合。
   - 规则评估涉及到确定规则前件(IF部分)的隶属度,并使用这个隶属度来评估后件(SO部分)。

3. **模糊推理(Fuzzy Inference)**:
   - 使用模糊逻辑运算(如模糊AND、OR、NOT)来组合规则的前件和后件。
   - 这个过程可能涉及到多个规则的组合,每个规则都对输出模糊集合有所贡献。

4. **聚合(Aggregation)**:
   - 将所有规则产生的模糊输出集合组合成一个单一的模糊集合。这通常涉及到模糊逻辑运算,如模糊OR或模糊AND。
   - 例如,如果有多个规则指向同一个输出,聚合步骤将确定这些规则的输出如何合并。

5. **去模糊化(Defuzzification)**:
   - 将模糊输出转换回 crisp(非模糊)值。这个过程涉及到从模糊集合中提取一个具体的数值。
   - 常见的去模糊化方法包括最大隶属度原则(Max Membership Principle)、加权平均(Weighted Average)和中位数方法(Median Method)。

6. **输出(Output)**:
   - 去模糊化后得到的 crisp 值作为模糊推理的最终输出。

**示例**:
假设我们正在设计一个基于模糊逻辑的恒温器,其目标是根据房间的温度自动调整加热器的输出。

- **模糊化**:将实际温度(例如72°F)转换为模糊集合“冷”、“适中”和“热”的隶属度。
- **规则评估**:评估规则,如“如果温度是冷的,那么增加加热”。
- **模糊推理**:如果有多个规则被激活,使用模糊逻辑运算来确定加热器的输出。
- **聚合**:合并所有激活规则的输出,得到一个模糊的加热器输出集合。
- **去模糊化**:从模糊的加热器输出集合中确定一个具体的加热器设置(例如,70%的加热能力)。
- **输出**:恒温器最终输出一个具体的加热器设置值。

模糊推理在控制、决策支持系统、专家系统等领域有广泛的应用。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值