【compshare】(5):使用UCloud(优刻得)的compshare算力平台,运行stable-diffusion-3-medium-comfyui镜像,可以进行文生图,使用简便,开箱即用

关于compshare算力共享平台

关于UCloud(优刻得)旗下的compshare算力共享平台
UCloud(优刻得)是中国知名的中立云计算服务商,科创板上市,中国云计算第一股。
Compshare GPU算力平台隶属于UCloud,专注于提供高性价4090算力资源,配备独立IP,支持按时、按天、按月灵活计费,支持github、huggingface访问加速。

https://www.compshare.cn/?ytag=GPU_flyiot_Lcsdn_csdn_display

1,创建一个新镜像,需要记录随即密码

运行stable-diffusion-3-medium-comfyui镜像

已经有了最新的stable-diffusion-3镜像

使用的开源项目地址:
https://github.com/comfyanonymous/ComfyUI
在这里插入图片描述

2,创建镜像之后就可以登陆了,端口IP加

通过浏览器访问: http://xxx.xx.xxx.xx:8188

在我的资源里面有ip地址:
在这里插入图片描述

然后就可以看到界面了:
在这里插入图片描述

3,运行queue prompt 就可以执行

按钮在右下角的prompt 执行:

在这里插入图片描述
可以执行多个。会有队列数量。

4,还可以登陆到服务器看效果

 ssh ubuntu@xxx.xx.xxx.xx

查看服务,重启服务

温馨提示:
当前镜像已预装nvidia-driver,cuda,conda,ComfyUI
ComfyUI被systemd托管,开机自启。
通过浏览器访问: http://xxx.xx.xxx.xx:8188
即可,注意ip需要替换为云主机的外网ip,
如果无法访问请在控制台检查安全规则是否放行上述端口。

停止ComfyUI服务:
sudo systemctl stop comfyui.service
查看ComfyUI服务状态:
sudo systemctl status comfyui.service
重启ComfyUI服务:
sudo systemctl restart comfyui.service
查看ComfyUI服务日志:
sudo journalctl -u comfyui.service -f

执行速度还是挺快的

Jun 27 08:57:46 10-60-80-185 bash[1257]: got prompt
Jun 27 08:57:47 10-60-80-185 bash[1257]: [100B blob data]
Jun 27 08:57:47 10-60-80-185 bash[1257]: [368B blob data]
Jun 27 08:57:47 10-60-80-185 bash[1257]: Prompt executed in 0.92 seconds
Jun 27 08:57:48 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:48 10-60-80-185 bash[1257]: Prompt executed in 0.92 seconds
Jun 27 08:57:49 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:49 10-60-80-185 bash[1257]: Prompt executed in 0.92 seconds
Jun 27 08:57:50 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:50 10-60-80-185 bash[1257]: Prompt executed in 0.91 seconds
Jun 27 08:57:51 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:51 10-60-80-185 bash[1257]: Prompt executed in 0.91 seconds
Jun 27 08:57:52 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:52 10-60-80-185 bash[1257]: Prompt executed in 0.92 seconds
Jun 27 08:57:53 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:53 10-60-80-185 bash[1257]: Prompt executed in 0.93 seconds
Jun 27 08:57:54 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:54 10-60-80-185 bash[1257]: Prompt executed in 0.92 seconds
Jun 27 08:57:55 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:55 10-60-80-185 bash[1257]: Prompt executed in 0.92 seconds
Jun 27 08:57:56 10-60-80-185 bash[1257]: [458B blob data]
Jun 27 08:57:56 10-60-80-185 bash[1257]: Prompt executed in 0.92 seconds

显卡资源占用还行

在这里插入图片描述

5,镜像非常方便

镜像和模型都打包在里面了,直接开箱就用。真的特别方便。
还可以导入导出自己的配置。搜索各种提示词文案。
用完记得关闭服务呢!

在这里插入图片描述
还有汉化包安装:
https://github.com/ZHO-ZHO-ZHO/ComfyUI-ZHO-Chinese?tab=readme-ov-file

### 使用LlaMA-Factory进行多GPU环境下PPO法的训练 #### 1. 环境准备 为了在多GPU环境中使用LlaMA-Factory进行PPO(Proximal Policy Optimization)法的训练,首先需要确保环境已正确设置。推荐使用高性能计资源如Compshare提供的GPU平台[^3]。 #### 2. 安装依赖库 安装必要的Python包和其他依赖项,特别是那些支持分布式训练的库,例如`torch`, `transformers`以及`accelerate`等。这些工具可以帮助管理不同设备间的通信和同步操作: ```bash pip install torch transformers accelerate ``` #### 3. 配置文件调整 对于复杂模型结构中的特定模块训练,在配置文件中指定要化的部分。当涉及到像Transformer这样的架构时,可以通过定义一个包含目标子网络名称的列表来进行精细化控制[^1]。针对PPO而言,则需特别注意策略网络(policy network)及相关参数更新机制的设计。 #### 4. 编写训练脚本 编写适用于多GPU场景下的训练逻辑。下面是一个简单的例子,展示了如何利用PyTorch Lightning框架简化跨多个形处理器执行强化学习任务的过程: ```python import pytorch_lightning as pl from pytorch_lightning.strategies import DDPStrategy from transformers import AutoModelForCausalLM, TrainerCallback class PPOLightningModule(pl.LightningModule): def __init__(self, model_name_or_path="facebook/opt-iml-max-1.3b"): super().__init__() self.model = AutoModelForCausalLM.from_pretrained(model_name_or_path) def forward(self, *args, **kwargs): return self.model(*args, **kwargs) def training_step(self, batch, batch_idx): outputs = self(**batch) loss = outputs.loss self.log('train_loss', loss) return loss def configure_optimizers(self): optimizer = AdamW(self.parameters(), lr=5e-5) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=self.trainer.max_steps) return [optimizer], [{"scheduler": scheduler, "interval": "step"}] if __name__ == "__main__": trainer = pl.Trainer( max_epochs=3, strategy=DDPStrategy(find_unused_parameters=False), accelerator='gpu', devices=-1, # Use all available GPUs. precision=16, # Mixed Precision Training can speed up the process and reduce memory usage. callbacks=[TrainerCallback()] ) module = PPOLightningModule() dataloader = ... # Define your DataLoader here. trainer.fit(module, train_dataloaders=dataloader) ``` 此代码片段实现了基于PyTorch Lightning的基础版本PPO训练流程,并启用了混合精度模式以提升性能表现。同时采用了数据并行(Data Parallelism)的方式让程序能够在多张显卡上高效运行[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值