图说微积分(九)极限与级数

这章主要将了当我们遇到一些0/0,∞/∞的未定式极限的时候,可以用级数的方法找到一些灵感。

还记得Sin(x)与x的比值的极限吗?

下面将sin(x)在0出用泰勒级数展开,我们看到除了第一项,其他的项都带有x,当x趋近于0时,整个极限趋近于1。


可能你能用罗比达法则将其解求出来,但是你知道罗比达法则是怎么来的吗?教授说了凡是需了解其背后运作的规律和原理,坚决不做只会记忆的木头人!

所以为什么罗比达法则成立呢?我们用级数的方法来了解它:


假设f和g都是当x趋近于0时函数值趋近于0,我们将f和g在a点用泰勒级数展开。

因为f和g在x=0函数值为0,那么我们对他们分别求导,再比较大小,这时候就是比较他们展开式中1次(x-a)的系数的大小。如果1次系数不能区分大小,那么还需要比较二次或者是更多次的系数大小,对应至原函数的n阶导数的大小。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值