这章主要将了当我们遇到一些0/0,∞/∞的未定式极限的时候,可以用级数的方法找到一些灵感。
还记得Sin(x)与x的比值的极限吗?
下面将sin(x)在0出用泰勒级数展开,我们看到除了第一项,其他的项都带有x,当x趋近于0时,整个极限趋近于1。
可能你能用罗比达法则将其解求出来,但是你知道罗比达法则是怎么来的吗?教授说了凡是需了解其背后运作的规律和原理,坚决不做只会记忆的木头人!
所以为什么罗比达法则成立呢?我们用级数的方法来了解它:
假设f和g都是当x趋近于0时函数值趋近于0,我们将f和g在a点用泰勒级数展开。
因为f和g在x=0函数值为0,那么我们对他们分别求导,再比较大小,这时候就是比较他们展开式中1次(x-a)的系数的大小。如果1次系数不能区分大小,那么还需要比较二次或者是更多次的系数大小,对应至原函数的n阶导数的大小。