Dirichlet卷积和Mobius反演的一些基础知识整理

Mobius函数

如果d = 1, μ ( d ) = 1 \mu(d) = 1 μ(d)=1
如果d为k个互异质数乘积 则 μ ( d ) = ( − 1 ) k \mu(d) = (-1)^k μ(d)=(1)k
否则 μ ( d ) = 0 \mu(d) = 0 μ(d)=0

Dirichlet卷积

两个函数f,g的Dirichlet卷积为 ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n / d ) (f*g)(n) = \sum_{d|n}f(d)g(n/d) (fg)(n)=dnf(d)g(n/d)
(若f与g皆为积性函数,则 f ∗ g f*g fg也为积性函数)
Dirichlet卷积满足交换律、结合律、分配律

Mobius反演

两个函数f,g满足
f ( n ) = ∑ d ∣ n g ( d ) f(n) = \sum_{d|n}g(d) f(n)=dng(d)
g ( n ) = ∑ d ∣ n μ ( d ) f ( n / d ) g(n) = \sum_{d|n}\mu(d)f(n/d) g(n)=dnμ(d)f(n/d)
还有其他的形式,就不写在这里了

证明

f ( n ) = ∑ d ∣ n g ( d ) f(n) = \sum_{d|n} g(d) f(n)=dng(d)
g ( n ) = ∑ m ∣ n [ n / m = 1 ] g ( m ) g(n) = \sum_{m|n} [n / m = 1]g(m) g(n)=mn[n/m=1]g(m)
= ∑ m ∣ n ∑ d ∣ n / m μ ( d ) g ( m ) =\sum_{m|n}\sum_{d|n/m}\mu(d)g(m) =mndn/mμ(d)g(m)
= ∑ d ∣ n ∑ m ∣ n / d μ ( d ) g ( m ) =\sum_{d|n}\sum_{m|n/d}\mu(d)g(m) =dnmn/dμ(d)g(m)
= ∑ d ∣ n μ ( d ) ∑ m ∣ n / d g ( m ) =\sum_{d|n}\mu(d)\sum_{m|n/d}g(m) =dnμ(d)mn/dg(m)
= ∑ d ∣ n μ ( d ) f ( n / d ) =\sum_{d|n}\mu(d)f(n/d) =dnμ(d)f(n/d)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值