Dirichlet卷积 学习小记

定义

定义数论函数 f f g的狄利克雷卷积为 h h ,则h(n)=d|nf(d)g(nd),记作 h=fg h = f ∗ g

一些性质

Dirichlet D i r i c h l e t 卷积满足交换律,结合律,对加法满足分配律
两个积性函数的狄利克雷卷积依旧为积性函数。(证明比较显然,这就不写了)

一些常见的数论函数

1(i)=1,n(i)=n 1 ( i ) = 1 , n ( i ) = n (常数函数)
莫比乌斯函数 μ μ
欧拉函数 φ(i) φ ( i ) 表示小于等于 i i i互质的数的个数。
id(i)=i i d ( i ) = i
σ(i)=d|id σ ( i ) = ∑ d | i d
τ(i)=d|i1 τ ( i ) = ∑ d | i 1
e e 为单位元,它卷上任意的数论函数仍为原数论函数,简单来说,就是e(n)=[n=1]

一些常用的狄利克雷卷积

(1μ)=e ( 1 ∗ μ ) = e ,因为 d|nμ(d)=[n=1] ∑ d | n μ ( d ) = [ n = 1 ]
μid=φ μ ∗ i d = φ ,将欧拉函数的通式展开即可得到此式。
1id=σ 1 ∗ i d = σ
11=τ 1 ∗ 1 = τ

我们能够通过简单的狄利克雷卷积运算轻易地证出莫比乌斯反演
若有 F(n)=d|nf(d) F ( n ) = ∑ d | n f ( d )
则有 F=1f F = 1 ∗ f ,两边同时卷上 μ μ ,可得
μF=μ1f μ ∗ F = μ ∗ 1 ∗ f
又因为 1μ=e 1 ∗ μ = e ,所以
f=μF f = μ ∗ F
f(n)=d|nμ(d)F(nd) f ( n ) = ∑ d | n μ ( d ) ∗ F ( n d )

我们甚至可以弄出一些很棒的东西,比如说
id=ide=idμ1=φ1 i d = i d ∗ e = i d ∗ μ ∗ 1 = φ ∗ 1
n=id(n)=d|nφ(d) n = i d ( n ) = ∑ d | n φ ( d )

σ=1id=1(1φ)=(11)φ=τφ σ = 1 ∗ i d = 1 ∗ ( 1 ∗ φ ) = ( 1 ∗ 1 ) ∗ φ = τ ∗ φ
σ(n)=d|nτ(d)φ(nd) σ ( n ) = ∑ d | n τ ( d ) ∗ φ ( n d )

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值