Miller_Rabbin算法判断大素数

由费马小定理 a p − 1 ≡ 1 ( m o d    p ) a^{p-1}\equiv1(\mod p) ap11(modp),当 p p p为质数时成
立。但当 p p p不为质数时该定理不一定成立。
这里用二次探测去优化这个公式。
大概内容若有 y 2 ≡ 1 ( m o d    p ) y^2\equiv 1(\mod p) y21(modp)其中 p p p为质数, y < p y<p y<p
则有 y = 1 y=1 y=1 y = p − 1 y=p-1 y=p1
k = p − 1 = 2 m ∗ n k=p-1=2^m*n k=p1=2mn
( a n ) 2 m ≡ 1 ( m o d    p ) (a^{n})^{2^m}\equiv 1(\mod p) (an)2m1(modp)
随机一个数 x x x去模拟公式中的 a a a。若 ( a n ) ( . . . ) % p (a^n)^{(...)}\%p (an)(...)%p不为1或者
( a n ) u % p = 1 , ( a n ) ( u + 1 ) % p = p − 1 (a^n)^u\%p=1,(a^n)^{(u+1)}\%p=p-1 (an)u%p=1,(an)(u+1)%p=p1则它一定不是质数。
进行十次以上的探测可以很高的概率判断素数。

using ll = long long ;
ll mul(ll a,ll b,ll p){
    ll r = 0;
    while(b) {
        if(1&b) r = (r + a) % p;
        a = (a + a) % p;
        b >>= 1;
    }
    return r;
}
ll mi(ll a, ll b, ll p){
    ll r = 1;
    while(b) {
        if(1&b) r = mul(r, a, p);
        a = mul(a, a, p);
        b >>= 1;
    }
    return r;
}
mt19937 rnd(time(NULL));
bool check(ll n){
    if(n == 1)return false;
    if(n == 2 || n == 3)return true;
    if(n + 1 & 1)return false;
    ll k = n - 1;
    int r = 0;
    while(k + 1 & 1) {
        k >>= 1;
        r ++;
    }
    ll res, la = 0;
    int cnt = 1;
    while(cnt--) {
        res = rnd() % (n - 1) + 1;
        res = mi(res, k, n);
        if(res == 1) continue;
        la = res;
        for(int i = 0; i < r; i++) {
            assert(res >= 0 && res < n);
            res = mul(res, res, n);
            if(res == 1){
                if(la != n - 1) return false;
                break;
            }
            la = res ;
        }
        if(res != 1)return false;
    }
    return true;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倾海、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值