Exercise 5.
同一个监狱长有不同的想法。 他命令囚犯排队站成一列,并在他们的每个头上放置红色或者蓝色的帽子。没有囚犯知道他自己的帽子的颜色,或他身后任何囚犯帽子的颜色,但他可以看到前面
的所有囚犯的帽子颜色。监狱长从队列的后面开始,要求每个囚犯猜测自己帽子的颜色。 囚犯只能回答“红色”或“蓝色”。如果他给出了错误的答案,他就会被拉到要喂鳄鱼那边。 如果他回答>正确,他就会被释放。 每个囚犯都可以听到身后囚犯的回答,但无法判断囚犯是否正确。
允许囚犯在戴帽子之咨询并商定策略(在监狱长听的时候),但在排队之后,除了回答“红色”或“蓝色”之外,他们不能以任何其他方式进行交流。
制定一项策略,允许P个囚犯中至少P-1个囚犯获释。
问题分析
- 商量最后一个囚犯数前面所有囚犯的红帽子数量,并判断帽子的个数是奇数还是偶数。约定用红色表示奇数,用蓝色表示偶数。
- 当第一个囚犯说出答案后。
- 倒数第二个囚犯根据倒数第一个囚犯说的颜色所代表的奇数还是偶数,再数前面的帽子的红色帽子的数量,判断自己帽子的颜色。其他囚犯根据他说的,判断总红帽子数的奇偶性发布发生变化。
- 倒数第三个囚犯之后的所有囚犯,数自己前面红色帽子的数量,同时,根据总红色帽子的奇偶性。然后再判断自己帽子的颜色。
- 以此类推。
过程如下:
排队后
排队倒数(含自己颜色) | 观察前面多少红色帽子 | 思考过程 | 回答 | 准确性 |
---|---|---|---|---|
红色 | ||||
蓝色 | ||||
红色 | ||||
红色 | ||||
蓝色 | ||||
蓝色 | ||||
蓝色 | ||||
红色 | ||||
蓝色 | ||||
红色 | ||||
蓝色 | ||||
红色 | ||||
蓝色 | ||||
红色 |
开始猜测
排队倒数(含自己颜色) | 观察前面多少红色帽子 | 思考过程 | 回答 | 准确性 |
---|---|---|---|---|
红色(监狱长询问) | 6个红色 | 6是偶数,偶数表示蓝色 | 蓝色 | 错误(当炮灰了) |
蓝色 | 记住:总红偶数 | |||
红色 |