AI芯片算力TOPS:定义、计算及实际应用解析

随着人工智能技术的快速发展,算力已经成为衡量芯片性能的重要指标。TOPS(Tera Operations Per Second)作为最新的算力单位,在AI芯片领域应用广泛,但其具体含义和计算方法常常被误解。本文将深入探讨TOPS的定义、计算方法及其对于AI算力的重要性。

一、TOPS的定义及计算方法

TOPS,全称为Tera Operations Per Second,是衡量一枚芯片每秒能够执行多少次基本操作的单位。一“次操作”通常指一次加法或乘法,对应大多数AI计算场景中的基本运算(如MAU中的乘法累加操作)。在实际应用中,TOPS往往用来衡量神经网络处理单元(NPU)的算力。

计算TOPS的方法通常与芯片的时钟频率和乘法累加单元(MAU)的数量有关。例如,Intel的Core Ultra 7 155H在1.4GHz的时钟频率下,配置有4096个INT8的MAU,每个MAU在一个时钟周期内可以进行2次操作(即一次乘法和一次加法),其总计算能力为11 TOPS。这说明该芯片每秒能够执行约11万亿次整数运算。

二、为什么汽车芯片算力用TOPS而不是GHz

在自动驾驶技术领域,芯片的计算能力通常用TOPS而不是GHz来衡量。这是因为自动驾驶的核心之一是感知系统,而该系统往往依赖复杂的神经网络进行大量的数字运算。相比GHz,TOPS更能够直观地反映芯片在自动驾驶场景中的能力。

非常简单地说,GHz主要代表硬件的时钟频率,即每秒内进行时钟振荡的次数,例如1 GHz代表每秒10亿次时钟振荡。然而,时钟频率并不能直接反映出芯片在实际场景中处理复杂AI运算的能力。TOPS则直观地表示了芯片实际执行的基础操作数量,例如,一个脑子每秒钟可以通过1 GHz的时钟频率幻想10亿次,在每次幻想的过程中处理8位数据,则其实际处理能力为8 TOPS。

自动驾驶要求芯片能高效处理大规模并发的图像和传感器数据,这需要一种能够量化这些实时计算能力的单位,TOPS因此成为了更加合适的选择。

三、TOPS vs TFLOPS:不同单位的适用场景

除了TOPS,AI领域还有另一种常见的算力度量单位——TFLOPS(Tera Floating Point Operations Per Second),用以表征每秒可执行的浮点运算数量,常用于GPU和其他浮点运算密集的硬件。

1 TFLOPS表示每秒执行一万亿次浮点运算操作。相比之下,TOPS则主要用于定点运算的场合,更适于AI推理任务。然而,AI推理中对于数据的精度要求通常并不高,因此使用定点运算的TOPS即能满足大部分需求,而不必追求更为复杂的浮点运算。

在某些场景下,还引入了TOPS/W(每瓦特功率下执行的万亿次操作),用以度量处理器的能效比。例如,一个具有1太拉(W)功耗和2TOPS算力的处理器,其能效比为2TOPS/W。这种度量方式能够反映出芯片在实际使用中的效率和能源消耗。

四、算力追求与实际应用

近年来,不断提高芯片的算力已经成为许多厂商竞逐的目标。30 TOPS、100 TOPS、200 TOPS甚至2000 TOPS的芯片相继发布,表面上看大家都在追求更高的算力。然而,算法工程师和产品经理们普遍认为,仅仅一味追求高算力是“不智”的,关键还在于软硬件的协同能力以及实际应用场景中的效率。

假设一个自动驾驶芯片有2000 TOPS的理论峰值算力,但在实际应用中能有效利用的算力也可能只有其十分之一。这主要是因为软件算法、数据带宽和存储访问等多种因素限制了计算资源的利用效率。业界一些芯片厂商,如地平线和Mobileye,更加强调优化算法和提高软硬件协同能力,以更高效地利用现有算力,而不是一味地堆砌硬件。

具体案例来看,一款高算力芯片如果配备了不成熟的算法,其性能也难以充分发挥。地平线的征程3芯片虽然单颗仅有5 TOPS的算力,但其在8兆摄像头实时计算中表现出色。这得益于其硬件与算法的高度协同,实现了高效的计算资源利用率。

五、真实AI效能:FPS与实际利用率

TOPS数值虽然高,但在实际应用场景中能否充分利用是一个关键问题。行业逐渐意识到,理论峰值算力并不能完全反映芯片的实际效能,算力的有效利用率也需考虑。

例如,特斯拉的FSD芯片以72 TOPS的算力,经过高效的算法支持处理每秒2300帧图像,极大提升了计算效率。类似于FPS(Frame Per Second, 每秒处理帧数)也是评估芯片真实效能的关键指标之一。FPS较高的芯片在实际应用场景中,能够更快速地进行数据处理,带来更高的安全性和效率。

六、软硬一体:优化算法与芯片设计

AI芯片设计的壁垒不仅是硬件性能,更是在于对算法的深度理解。芯片公司必须具备强大的软硬件协同设计能力,以确保高效的资源利用率。

地平线创始人余凯多次强调,“硬件性能非唯一评价标准,架构设计和对算法的洞察才是芯片进化的推动力。”地平线征程系列芯片,即通过优化算法和提高硬件架构设计,成功提高了算力的利用率。具体来看,地平线在设计芯片时,已经前瞻性地融入了主流神经网络算法的计算特点,使得芯片在面对不同算法时仍能保持极高的计算效率。

Mobileye和安霸等芯片厂商也在推行类似的理念,通过软硬件协同设计,优化芯片的真实AI效能。Mobileye的EyeQ Ultra芯片虽然物理算力仅为176 TOPS,但其优秀的计算效率足以在两片芯片上运行整个SuperVision系统,实际效能非常高。

TOPS作为AI算力的度量单位,在评估芯片性能中发挥了重要作用,但其仅仅是表征芯片理论运算能力的指标。实际应用中,算力的有效利用率、硬件的设计架构、以及与算法的配合度均是影响芯片性能的重要因素。通过合理评估和优化这些因素,芯片厂商才能真正实现“高效AI”,优化AI应用场景中的实际计算效能。

TOPS在当前AI芯片领域是一个重要的算力度量标准,但它并非评价芯片性能的唯一指标。真正的AI性能还需综合考虑多方面因素,通过软硬件的深度结合,才能在实际应用中发挥出最佳效果。

转自:AI芯片算力TOPS:定义、计算及实际应用解析_其他智能设备_什么值得买 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值