关于用keras提取NN中间layer输出

Build model...
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
main_input (InputLayer)         (None, 89, 39)       0                                            
__________________________________________________________________________________________________
cropping1d_1 (Cropping1D)       (None, 85, 39)       0           main_input[0][0]                 
__________________________________________________________________________________________________
cropping1d_2 (Cropping1D)       (None, 85, 39)       0           main_input[0][0]                 
__________________________________________________________________________________________________
cropping1d_3 (Cropping1D)       (None, 85, 39)       0           main_input[0][0]                 
__________________________________________________________________________________________________
cropping1d_4 (Cropping1D)       (None, 85, 39)       0           main_input[0][0]                 
__________________________________________________________________________________________________
cropping1d_5 (Cropping1D)       (None, 85, 39)       0           main_input[0][0]                 
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 85, 195)      0           cropping1d_1[0][0]               
                                                                 cropping1d_2[0][0]               
                                                                 cropping1d_3[0][0]               
                                                                 cropping1d_4[0][0]               
                                                                 cropping1d_5[0][0]               
__________________________________________________________________________________________________
fc1 (BatchNormalization)        (None, 85, 195)      780         concatenate_1[0][0]              
__________________________________________________________________________________________________
fc2 (Bidirectional)             (None, 85, 2048)     9994240     fc1[0][0]                        
__________________________________________________________________________________________________
fc3 (BatchNormalization)        (None, 85, 2048)     8192        fc2[0][0]                        
__________________________________________________________________________________________________
global_average_pooling1d_1 (Glo (None, 2048)         0           fc3[0][0]                        
__________________________________________________________________________________________________
main_output (Dense)             (None, 2)            4098        global_average_pooling1d_1[0][0] 
==================================================================================================
Total params: 10,007,310
Trainable params: 10,002,824
Non-trainable params: 4,486
__________________________________________________________________________________________________

假设我网络层数是上面这个结构.

如果我想得到pooling的输出, keras上有两张方法。

intermediate_layer_model = Model(inputs=model.input,outputs=model.get_layer(str('global_average_pooling1d_1')).output)
#model.summary()
#model.get_layer(str('cropping1d_1'))
intermediate_output = intermediate_layer_model.predict(data)

data是你的输入所用的数据.... 

from keras import backend as K
get_11rd_layer_output = K.function([model.layers[0].input],
                                  [model.layers[10].output])
layer_output = get_11rd_layer_output([data])[0]

我这里第10层是Pooling层.

这两个代码的output是一样的.. 

一般我看人用的都是第二个... 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个使用Keras编写的Transformer分类器的示例代码: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Dropout from tensorflow.keras.layers import LayerNormalization, MultiHeadAttention from tensorflow.keras.layers import Embedding, Flatten from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam def positional_encoding(seq_length, d_model): pos = tf.range(seq_length)[:, tf.newaxis] i = tf.range(d_model)[tf.newaxis, :] angle_rates = 1 / tf.pow(10000.0, (2 * (i // 2)) / tf.cast(d_model, tf.float32)) angle_rads = pos * angle_rates sines = tf.math.sin(angle_rads[:, 0::2]) cosines = tf.math.cos(angle_rads[:, 1::2]) pos_encoding = tf.concat([sines, cosines], axis=-1) return tf.cast(pos_encoding, tf.float32) def create_padding_mask(seq): seq = tf.cast(tf.math.equal(seq, 0), tf.float32) return seq[:, tf.newaxis, tf.newaxis, :] def create_look_ahead_mask(size): mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) return mask def scaled_dot_product_attention(q, k, v, mask): matmul_qk = tf.matmul(q, k, transpose_b=True) dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) if mask is not None: scaled_attention_logits += (mask * -1e9) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) output = tf.matmul(attention_weights, v) return output class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = tf.keras.Sequential([ Dense(dff, activation='relu'), Dense(d_model) ]) self.layernorm1 = LayerNormalization(epsilon=1e-6) self.layernorm2 = LayerNormalization(epsilon=1e-6) self.dropout1 = Dropout(rate) self.dropout2 = Dropout(rate) def call(self, x, training, mask): attn_output = self.mha(x, x, x, mask) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) return out2 class TransformerEncoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate=0.1): super(TransformerEncoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = Embedding(input_vocab_size, d_model) self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) self.dropout = Dropout(rate) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] def call(self, x, training, mask): seq_len = tf.shape(x)[1] x = self.embedding(x) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x def transformer_classifier(num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, num_classes, rate=0.1): inputs = Input(shape=(None,)) padding_mask = Lambda(create_padding_mask)(inputs) transformer_encoder = TransformerEncoder(num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate) x = transformer_encoder(inputs, True, padding_mask) x = Flatten()(x) x = Dense(num_classes, activation='softmax')(x) return Model(inputs=inputs, outputs=x) model = transformer_classifier(num_layers=4, d_model=128, num_heads=8, dff=512, input_vocab_size=10000, maximum_position_encoding=1000, num_classes=10) optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.98, epsilon=1e-9) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) ``` 这段代码实现了一个Transformer编码器,用于从变长的文本序列中提取特征,然后将这些特征输入到一个全连接层中进行分类。在这个示例中,我们定义了一个包含4个编码器层的Transformer,每个编码器层包含8个注意力头和一个前馈网络。我们还使用了位置编码、嵌入层和遮挡层来处理变长的文本序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值