Python实现贷款用户的信用评分卡

背景&原理&用途

信用评分技术是一种应用统计模型,其作用是对贷款申请人(信用卡申请人)做风险评估分值的方法。信用评分卡模型是一种成熟的预测方法,尤其在信用风险评估以及金融风险控制领域更是得到了比较广泛的使用。信用评分卡可以根据客户提供的资料、客户的历史数据、第三方平台(芝麻分、京东、微信等)的数据,对客户的信用进行评估。信用评分卡的建立是以对大量数据的统计分析结果为基础,具有较高的准确性和可靠性。

客户申请评分卡是一种统计模型,它可基于对当前申请人的各项资料进行评估并给出一个分数,该评分能定量对申请人的偿债能力作出预判。客户申请评分卡由一系列特征项组成,如,年龄、银行流水、收入等,逾期次数。每一个特征项都有值域范围,在开发评分卡系统模型中,这些特征的值域范围与申请人未来信用表现之间存在一定关系,然后给特征的值域分配适当的分数权重,分配的分数权重要反映这种相互关系。分数权重越大,说明该属性表示的信用表现越好。一个申请人的得分是其特征的值对应的权重得分的简单求和。

如果申请人的信用评分大于等于金融放款机构所设定的界限分数,此申请处于可接受的风险水平并将被批准;低于界限分数的申请人将被拒绝或给予标示以便进一步审查。

本文通过对Kaggle上的Give Me Some Credit 15w条数据的挖掘分析,结合信用评分卡的建立原理,完成了数据处理、特征变量选择、变量WOE编码离散化、logistic回归模型开发评估、信用评分卡和自动评分系统创建等,为金融放款机构等的风险水平控制给予了参考。

1.理解数据:

从Kaggle下载数据,得到csv文件,导入py3分析

data=pd.read_csv("C:\\Users\\Young\\Desktop\\give_me_some_credit\\cs-training.csv")
data=data.iloc[:,1:]#去掉第一列无用序号
data.info()  #查看数据集信息

在kaggle上查看列名含义,再用describe 查看 每列的数据构成,得到数据字典:

2.数据清洗

---- 2.1缺失值处理

由上面info信息可以看到,可以看出MonthlyIncome(月收入)和NumberOfDependents(家属数量)两个变量出现了缺失值。由于MonthlyIncome缺失值达到29731条数据,比例较大,因此不能直接将缺失值删除,选择随机森林法。而NumberOfDependents的缺失较少,对数据影响不大,因此直接删除。

# 用随机森林对缺失值预测填充函数
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression
def set_missing(df):
    process_df = df.ix[:,[5,0,1,2,3,4,6,7,8,9]] # 把已有的数值型特征取出来
    # 分成已知该特征和未知该特征两部分
    known = process_df[process_df.MonthlyIncome.notnull()].as_matrix()
    unknown = process_df[process_df.MonthlyIncome.isnull()].as_matrix()
    X = known[:, 1:]    # X为特征属性值
    y = known[:, 0]    # y为结果标签值
    rfr = RandomForestRegressor(random_state=0, n_estimators=200,max_depth=3,n_jobs=-1)
    rfr.fit(X,y)
    # 用得到的模型进行未知特征值预测 月收入
    predicted = rfr.predict(unknown[:, 1:]).round(0)
    print(predicted)
    # 用得到的预测结果填补原缺失数据
    df.loc[df.MonthlyIncome.isnull(), 'MonthlyIncome'] = predicted
    return df
data=set_missing(data)#用随机森林填补比较多的缺失值
data=data.dropna()#删除比较少的缺失值 :NumberOfDependents
data = data.drop_duplicates()#删除重复项
data.info()

---- 2.2异常值处理

train_box=data.iloc[:,[3,7,9]]  #NumberOfTime30-59DaysPastDueNotWorse,NumberOfTimes90DaysLate贷款数量 ,NumberOfTime60-89DaysPastDueNotWorse
train_box.boxplot(figsize=(10,4))

由describe可以明显看到age的 min 是0 ; NumberOfTime30-59DaysPastDueNotWorse,NumberOfTimes90DaysLate贷款数量 ,NumberOfTime60-89DaysPastDueNotWorse 有明显的离群点

箱线图:

剔除离群点:

data=data[data['age']>0]
data=data[data['NumberOfTime30-59DaysPastDueNotWorse']<90]
data['SeriousDlqin2yrs']=1-data['SeriousDlqin2yrs']  # 使好客户为1 , 坏客户为0,方便计数

2.3 探索性分析

在建立模型之前,我们一般会对现有的数据进行 探索性数据分析(Exploratory Data Analysis) 。 EDA是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索。常用的探索性数据分析方法有:直方图、散点图和箱线图等。

age=data['age']
sns.distplot(age)

age 大概成正太分布,符合统计假设

mi=data[data['MonthlyIncome']<50000]['MonthlyIncome'] 
sns.distplot(mi)

MonthlyIncome大致成正太分布,符合统计分析假设

---- 2.4 数据切分

为了验证后续算法模型的拟合效果,需要对数据集进行切分,分成训练集和测试集。

from sklearn.cross_validation import train_test_split
Y=data['SeriousDlqin2yrs']
X=data.ix[:,1:]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=0)
trainDf = pd.concat([Y_train, X_train], axis=1)
testDf = pd.concat([Y_test, X_test], axis=1)
clasTest = testDf.groupby('SeriousDlqin2yrs')['SeriousDlqin2yrs'].count()

— 2.5 特征工程

在本文中,我们采用信用评分模型的变量选择方法,通过WOE分析方法,即是通过比较指标分箱和对应分箱的违约概率来确定指标是否符合经济意义。首先我们对变量进行离散化(分箱)处理。

–2.5.1 分箱处理

变量分箱(binning)是对连续变量离散化(discretization)的一种称呼。信用评分卡开发中一般有常用的等距分段、等深分段、最优分段。其中等距分段(Equval length intervals)是指分段的区间是一致的,比如年龄以十年作为一个分段;等深分段(Equal frequency intervals)是先确定分段数量,然后令每个分段中数据数量大致相等;最优分段(Optimal Binning)又叫监督离散化(supervised discretizaion),使用递归划分(Recursive Partitioning)将连续变量分为分段,背后是一种基于条件推断查找较佳分组的算法。

我们首先选择对连续变量进行最优分段,在连续变量的分布不满足最优分段的要求时,再考虑对连续变量进行等距分段。最优分箱的代码如下:

# 定义自动分箱函数---最优分箱
def mono_bin(Y, X, n ):
    r = 0  #设定斯皮尔曼 初始值
    good=Y.sum()   #好客户的人数
    bad=Y.count()-good   #坏客户的人数
  #下面这段就是分箱的核心 ,就是 机器来 选择 指定 最优的分箱节点,代替我们自己来设置
    while np.abs(r) < 1:   #while ,不满足条件时,跳出循环
        d1 = pd.DataFrame({"X": X, "Y": Y, "Bucket": pd.qcut(X, n)}) #注意这里是pd.qcut, Bucket: 将 X 分为 n 段,n由 斯皮尔曼系数决定
        d2 = d1.groupby('Bucket', as_index = True)
        r, p = stats.spearmanr(d2.mean().X, d2.mean().Y)    # ? ? ?    # 以斯皮尔曼系数作为分箱终止条件
        n = n - 1
    d3 = pd.DataFrame(d2.X.min(), columns = ['min'])
    d3['min']=d2.min().X    #  min 就是分箱的节点
    d3['max'] = d2.max().X
    d3['sum'] = d2.sum().Y
    d3['total'] = d2.count().Y
    d3['rate'] = d2.mean().Y
    d3['woe']=np.log((d3['rate']/(1-d3['rate']))/(good/bad))
    d3['goodattribute']=d3['sum']/good
    d3['badattribute']=(d3['total']-d3['sum'])/bad
    iv=((d3['goodattribute']-d3['badattribute'])*d3['woe']).sum()   #返回 iv
    d4 = (d3.sort_index(by = 'min')).reset_index(drop=True)    # 返回 d  
    woe=list(d4['woe'].round(3))             #返回 woe
    cut=[]    #  cut 存放箱段节点
    cut.append(float('-inf'))  # 在 列表前加 -inf 
    for i in range(1,n+1):            # n 是前面的 分箱的 分割数  ,所以 分成n+1份
         qua=X.quantile(i/(n+1))     #quantile 分为数  得到分箱的节点
         cut.append(round(qua,4))   # 保留4位小数       #返回cut
    cut.append(float('inf')) # 在列表后加  inf
    return d4,iv,cut,woe

使用最优分段对于数据集中的RevolvingUtilizationOfUnsecuredLines、age、DebtRatio和MonthlyIncome进行分类:

dfx1,ivx1,cutx1,woex1=mono_bin(trainDf.SeriousDlqin2yrs,trainDf.RevolvingUtilizationOfUnsecuredLines,n=10) #贷款以及信用卡可用额度与总额度比例
dfx2, ivx2,cutx2,woex2=mono_bin(trainDf.SeriousDlqin2yrs,trainDf.age,n=10)   # 年龄
dfx4, ivx4,cutx4,woex4=mono_bin(trainDf.SeriousDlqin2yrs,trainDf.DebtRatio,n=20)   #负债比率
dfx5, ivx5,cutx5,woex5=mono_bin(trainDf.SeriousDlqin2yrs,trainDf.MonthlyIncome,n=10)  #月收入

对于上述分箱方法不能合理拆分的特征,采用无监督分箱–手动分箱:

pinf = float('inf')#正无穷大
ninf = float('-inf')#负无穷大
cutx3 = [ninf, 0, 1, 3, 5, pinf]
cutx6 = [ninf, 1, 2, 3, 5, 7, 9, pinf]   #加了 7,9  
cutx7 = [ninf, 0, 1, 3, 5, pinf]
cutx8 = [ninf, 0,1,2, 3, pinf]
cutx9 = [ninf, 0, 1, 3, pinf]
cutx10 = [ninf, 0, 1, 2, 3, 5, pinf]

def self_bin(Y,X,cat):#自定义人工分箱函数
    good=Y.sum()   #好用户数量
    bad=Y.count()-good   # 坏用户数量
    d1=pd.DataFrame({'X':X,'Y':Y,'Bucket':pd.cut(X,cat)}) #建立个数据框 X-- 各个特征变量 , Y--用户好坏标签 , Bucket--各个分箱
    d2=d1.groupby('Bucket', as_index = True)     #  按分箱分组聚合 ,并且社会为 Index
    d3 = pd.DataFrame(d2.X.min(), columns=['min'])  #  添加 min 列 ,不用管里面的 d2.X.min()
    d3['min'] = d2.min().X    #求每个箱段内 X 比如 家庭人数的最小值
    d3['max'] = d2.max().X    #求每个箱段内 X 比如 家庭人数的最大值
    d3['sum'] = d2.sum().Y    #求每个箱段内 Y 好客户的个数
    d3['total'] = d2.count().Y  #求每个箱段内  总共客户数
    d3['rate'] = d2.mean().Y    # 好客户率
    #WOE的全称是“Weight of Evidence”,即证据权重。WOE是对原始自变量的一种编码形式。是为了 计算 iv 准备的
    #要对一个变量进行WOE编码,需要首先把这个变量进行分组处理(也叫离散化、分箱等等,说的都是一个意思)
    d3['woe'] = np.log((d3['rate'] / (1 - d3['rate'])) / (good / bad))   
    d3['goodattribute'] = d3['sum'] / good     # 每个箱段内 好用户 占 总好用户数  的 比率
    d3['badattribute'] = (d3['total'] - d3['sum']) / bad  # 每个箱段内 坏用户 占 总坏用户数 的 比率
    #IV的全称是Information Value,中文意思是信息价值,或者信息量。  通俗的说 就是 变量的预测能力
    iv = ((d3['goodattribute'] - d3['badattribute']) * d3['woe']).sum()
    d4 = (d3.sort_index(by='min'))   #数据框 的 按 min 升序排列
    woe = list(d4['woe'].round(3))
    return d4, iv,woe
#对他们就行分箱处理:

dfx3,ivx3,woex3 = self_bin(trainDf.SeriousDlqin2yrs,trainDf['NumberOfTime30-59DaysPastDueNotWorse'], cutx3)
dfx6,ivx6 ,woex6= self_bin(trainDf.SeriousDlqin2yrs, trainDf['NumberOfOpenCreditLinesAndLoans'], cutx6)
dfx7,ivx7,woex7 = self_bin(trainDf.SeriousDlqin2yrs, trainDf['NumberOfTimes90DaysLate'], cutx7)
dfx8, ivx8,woex8 = self_bin(trainDf.SeriousDlqin2yrs, trainDf['NumberRealEstateLoansOrLines'], cutx8)
dfx9, ivx9,woex9 = self_bin(trainDf.SeriousDlqin2yrs, trainDf['NumberOfTime60-89DaysPastDueNotWorse'], cutx9)
dfx10,ivx10,woex10 = self_bin(trainDf.SeriousDlqin2yrs, trainDf['NumberOfDependents'], cutx10)

—2.5.2 特征选择

– 2.5.2.1相关系数矩阵

corr = trainDf.corr()#计算各变量的相关性系数
xticks = ['x0','x1','x2','x3','x4','x5','x6','x7','x8','x9','x10']#x轴标签
yticks = list(corr.index)#y轴标签
fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(1, 1, 1)
sns.heatmap(corr, annot=True, cmap='rainbow', ax=ax1, annot_kws={'size': 12, 'weight': 'bold', 'color': 'black'})#绘制相关性系数热力图
ax1.set_xticklabels(xticks, rotation=0, fontsize=14)
ax1.set_yticklabels(yticks, rotation=0, fontsize=14)
plt.savefig('C:\\Users\\Young\\Desktop\\give_me_some_credit\\矩阵热力图.png',dpi=200)
plt.show()

可见NumberOfTime30-59DaysPastDueNotWorse,NumberOfTimes90DaysLate和NumberOfTime60-89DaysPastDueNotWorse这三个特征对于我们所要预测的值SeriousDlqin2yrs(因变量)有较强的相关性。

相关性分析只是初步的检查,进一步检查模型的VI(证据权重)作为变量筛选的依据。

2.5.2.2 IV值筛选

通过IV值判断变量预测能力的标准是:小于 0.02: unpredictive;0.02 to 0.1: weak;0.1 to 0.3: medium; 0.3 to 0.5: strong

ivlist=[ivx1,ivx2,ivx3,ivx4,ivx5,ivx6,ivx7,ivx8,ivx9,ivx10]#各变量IV
index=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10']#x轴的标签
fig1 = plt.figure(1,figsize=(8,5))
ax1 = fig1.add_subplot(1, 1, 1)
x = np.arange(len(index))+1 
ax1.bar(x,ivlist,width=.4) #  ax1.bar(range(len(index)),ivlist, width=0.4)#生成柱状图  #ax1.bar(x,ivlist,width=.04)
ax1.set_xticks(x)
ax1.set_xticklabels(index, rotation=0, fontsize=15)
ax1.set_ylabel('IV', fontsize=16)   #IV(Information Value),
#在柱状图上添加数字标签
for a, b in zip(x, ivlist):
    plt.text(a, b + 0.01, '%.4f' % b, ha='center', va='bottom', fontsize=12)
plt.show()

可以看出,DebtRatio (x4)、MonthlyIncome(x5)、NumberOfOpenCreditLinesAndLoans(x6)、NumberRealEstateLoansOrLines(x8)和NumberOfDependents(x10)变量的IV值明显较低,所以予以删除。

故选择特征:RevolvingUtilizationOfUnsecuredLines(x1)、age(x2)、NumberOfTime30-59DaysPastDueNotWorse(x3)、NumberOfTimes90DaysLate(x7)、NumberOfTime60-89DaysPastDueNotWorse(x9)作为后续评分模型建立的对象。

3.建立模型

证据权重(Weight of Evidence,WOE)转换可以将Logistic回归模型转变为标准评分卡格式。引入WOE转换的目的并不是为了提高模型质量,只是一些变量不应该被纳入模型,这或者是因为它们不能增加模型值,或者是因为与其模型相关系数有关的误差较大,其实建立标准信用评分卡也可以不采用WOE转换。这种情况下,Logistic回归模型需要处理更大数量的自变量。尽管这样会增加建模程序的复杂性,但最终得到的评分卡都是一样的。

— 3.1模型准备

在建立模型之前,我们需要将筛选后的变量转换为WoE值,便于信用评分

#替换成woe函数
def trans_woe(var,var_name,woe,cut):
    woe_name=var_name+'_woe'
    for i in range(len(woe)):       # len(woe) 得到woe里 有多少个数值
        if i==0:
            var.loc[(var[var_name]<=cut[i+1]),woe_name]=woe[i]  #将woe的值按 cut分箱的下节点,顺序赋值给var的woe_name 列 ,分箱的第一段
        elif (i>0) and  (i<=len(woe)-2):
            var.loc[((var[var_name]>cut[i])&(var[var_name]<=cut[i+1])),woe_name]=woe[i] #    中间的分箱区间   ,,数手指头就很清楚了
        else:
            var.loc[(var[var_name]>cut[len(woe)-1]),woe_name]=woe[len(woe)-1]   # 大于最后一个分箱区间的 上限值,最后一个值是正无穷
    return var
x1_name='RevolvingUtilizationOfUnsecuredLines'
x2_name='age'
x3_name='NumberOfTime30-59DaysPastDueNotWorse'
x7_name='NumberOfTimes90DaysLate'
x9_name='NumberOfTime60-89DaysPastDueNotWorse'

trainDf=trans_woe(trainDf,x1_name,woex1,cutx1)
trainDf=trans_woe(trainDf,x2_name,woex2,cutx2)
trainDf=trans_woe(trainDf,x3_name,woex3,cutx3)
trainDf=trans_woe(trainDf,x7_name,woex7,cutx7)
trainDf=trans_woe(trainDf,x9_name,woex9,cutx9)

Y=trainDf['SeriousDlqin2yrs']   #因变量
#自变量,剔除对因变量影响不明显的变量
#X=trainDf.drop(['SeriousDlqin2yrs','DebtRatio','MonthlyIncome', 'NumberOfOpenCreditLinesAndLoans','NumberRealEstateLoansOrLines','NumberOfDependents'],axis=1)
X=trainDf.iloc[:,-5:]
X.head()

— 3.2 STATSMODEL包来建立逻辑回归模型

import statsmodels.api as sm
X1=sm.add_constant(X)
logit=sm.Logit(Y,X1)
result=logit.fit()
print(result.summary())

4.模型评估

我们需要验证一下模型的预测能力如何。我们使用在建模开始阶段预留的test数据进行检验。通过ROC曲线和AUC来评估模型的拟合能力。在Python中,可以利用sklearn.metrics,它能方便比较两个分类器,自动计算ROC和AUC

testDf=trans_woe(testDf,x1_name,woex1,cutx1)
testDf=trans_woe(testDf,x2_name,woex2,cutx2)
testDf=trans_woe(testDf,x3_name,woex3,cutx3)
testDf=trans_woe(testDf,x7_name,woex7,cutx7)
testDf=trans_woe(testDf,x9_name,woex9,cutx9)
#构建测试集的特征和标签
test_X=testDf.iloc[:,-5:]   #测试数据 特征
test_Y=testDf.iloc[:,0]     #测试数据  标签

#评估
from sklearn import metrics
X3=sm.add_constant(test_X)
resu = result.predict(X3)    #进行预测
fpr,tpr,threshold=metrics.roc_curve(test_Y,resu)   #评估算法
rocauc=metrics.auc(fpr,tpr)   #计算AUC

plt.figure(figsize=(8,5))  #只能在这里面设置
plt.plot(fpr,tpr,'b',label='AUC=%0.2f'% rocauc)
plt.legend(loc='lower right',fontsize=14)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.ylabel('TPR-真正率',fontsize=16)
plt.xlabel('FPR-假正率',fontsize=16)
plt.show()

从上图可知,AUC值为0.85,说明该模型的预测效果还是不错的,正确率较高

5.创建信用评分卡

在建立标准评分卡之前,还需要设定几个评分卡参数:基础分值、 PDO(比率翻倍的分值)和好坏比。 这里, 我们取600分为基础分值b,取20为PDO (每高20分好坏比翻一倍),好坏比O取20。

p=20/np.log(2)#比例因子
q=600-20*np.log(20)/np.log(2)#等于offset,偏移量
x_coe=[2.6084,0.6327,0.5151,0.5520,0.5747,0.4074]#回归系数  ???
baseScore=round(q+p*x_coe[0],0)
#个人总评分=基础分+各部分得分
def get_score(coe,woe,factor):
    scores=[]
    for w in woe:
        score=round(coe*w*factor,0)
        scores.append(score)
    return scores
#每一项得分
x1_score=get_score(x_coe[1],woex1,p)
x2_score=get_score(x_coe[2],woex2,p)
x3_score=get_score(x_coe[3],woex3,p)
x7_score=get_score(x_coe[4],woex7,p)
x9_score=get_score(x_coe[5],woex9,p)

def compute_score(series,cut,score):
    list = []
    i = 0
    while i < len(series):
        value = series[i]
        j = len(cut) - 2
        m = len(cut) - 2
        while j >= 0:
            if value >= cut[j]:
                j = -1
            else:
                j -= 1
                m -= 1
        list.append(score[m])
        i += 1
    return list
test1 = pd.read_csv("C:\\Users\\Young\\Desktop\\give_me_some_credit\\cs-training.csv")
test1['BaseScore']=np.zeros(len(test1))+baseScore
test1['x1'] =compute_score(test1['RevolvingUtilizationOfUnsecuredLines'], cutx1, x1_socre)
test1['x2'] = compute_score(test1['age'], cutx2, x2_score)
test1['x3'] = compute_score(test1['NumberOfTime30-59DaysPastDueNotWorse'], cutx3, x3_score)
test1['x7'] = compute_score(test1['NumberOfTimes90DaysLate'], cutx7, x7_score)
test1['x9'] = compute_score(test1['NumberOfTime60-89DaysPastDueNotWorse'],cutx9,x9_score)
test1['Score'] = test1['x1'] + test1['x2'] + test1['x3'] + test1['x7'] +test1['x9']  + baseScore

scoretable1=test1.iloc[:,[1,-7,-6,-5,-4,-3,-2,-1]]  #选取需要的列,就是评分列
scoretable1.head()
scoretable1.to_csv('C:\\Users\\Young\\Desktop\\give_me_some_credit\\ScoreData简化版.csv')
colNameDict={'x1': 'RevolvingUtilizationOfUnsecuredLines' ,'x2':'age','x3':'NumberOfTime30-59DaysPastDueNotWorse',
             'x7':'NumberOfTimes90DaysLate', 'x9':'NumberOfTime60-89DaysPastDueNotWorse'}
scoretable2=scoretable1.rename(columns=colNameDict,inplace=False)
scoretable2.to_csv('C:\\Users\\Young\\Desktop\\give_me_some_credit\\ScoreData.csv')

简化版信用评分卡:

即,


转载https://zhuanlan.zhihu.com/p/44663658

python金融风控评分卡模型和数据分析(加强版)

  • 2
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值