anaconda 虚拟环境编译安装caffe

1. conda create -n python=2.7 anaconda

2. 安装caffe依赖,这里是安装到了 $HOME/.conda/envs/caffe/ 以后如果自己要编译protobuf也是要装在这个位置 

conda install lmdb openblas glog gflags hdf5 protobuf leveldb boost opencv cmake -y

3.  或者不用运行2直接conda install caffe-gpu 会自动安装所有依赖, 安装的protobuf是3.6.1 如果要自己编译caffeprotobuf版本是2.5.0。  此时官方的caffe已经装好,如果要使用rgb大神的faster rcnn则要再重头编译一次。下面继续。

4.下载并解压好protobuf 2.5.0后(首先conda uninstall protobuf不然下面会冲突)

./autogen.sh

./configure --prefix=$HOME/.conda/envs/caffe/

make

make install

5.下载faster rcnn模型,注意这个cuda9不兼容,需要修改一些文件

cd caffe-fast-rcnn

git remote add caffe https://github.com/BVLC/caffe.git

git fetch caffe

git merge -X theirs caffe/master

remove self_.attr("phase") = static_cast<int>(this->phase_); from include/caffe/layers/python_layer.hpp after merging.

6. 在CMakelists.txt 开头添加

set(CMAKE_CXX_STANDARD 11)

编辑.bashrc 配置文件:

export CUDA_HOME=$HOME/cuda-9.0
xport CUDA_HOME=$CUDA_HOME # included for sake of completeness
export PATH=$CUDA_HOME/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=$CUDA_HOME/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

7. source activate caffe

export ENV_PATH=$HOME/.conda/envs/caffe/
cmake -DBLAS=open -DCUDNN_INCLUDE=$CUDA_HOME/include/ -DCUDNN_LIBRARY=$CUDA_HOME/lib64/libcudnn.so -DCMAKE_PREFIX_PATH=$ENV_PATH -DCMAKE_INSTALL_PREFIX=$ENV_PATH ..

8. 编译并安装完之后如果import caffe 出错再conda install protobuf

但是以后如果再次编译caffe报protobuf相关的错误可以

  (1)  conda uninstall protobuf

        conda uninstall libprotobuf

(2)   到步骤 4的目录下:再次运行make install

之后可以去caffe/lib/pkgconfig/protobuf.pc 看一下, 这个是FindProtobuf.cmake根据他查找protobuf 确定这个.pc文件里面的版本是2.5.0就好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值