腾讯开源ncnn:caffemodel转化为.param和.bin文件

本文档详细记录了如何将caffe模型转换为ncnn的.param和.bin文件,包括创建VS工程,配置工程,转换工具的使用,以及提供alexnet模型的转换示例。ncnn是一个在手机端优化的深度学习前向计算框架,广泛应用于腾讯的多个产品中。
摘要由CSDN通过智能技术生成

本博记录为卤煮使用时的记录,属于事后回忆记录,如有疏漏,请指正。

卤煮:非文艺小燕儿

本博地址:腾讯开源ncnn:caffemodel转化为.param和.bin文件

感谢开源共享的各位大牛们,让我们能够站在巨人的肩膀上前行。


ncnn Git:https://github.com/Tencent/ncnn

ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工

在OpenCV中使用NCNN(Neural Computation Network)库进行C++推理模型,你需要按照以下步骤操作: 1. 安装NCNN库:首先确保你已经安装了NCNN,可以从其官方GitHub仓库下载源码包并编译,或者从预编译版本获取适用于你的系统的二进制包。 2. 准备模型文件:NCNN模型通常由两个文件组成:`.param`文件存储网络结构描述,`.bin`文件包含模型权重。这两个文件需要放在程序可以访问的地方。 3. 加载模型:使用NCNN的`Ncnn::Net`类,你可以通过以下代码加载模型: ```cpp #include <ncnn.h> std::string model_path = "path_to_your_model.param"; std::string param_path = "path_to_your_model.bin"; // 初始化Net对象 Ncnn::Net net; if (!net.load(model_path, param_path)) { // 处理错误,例如打印错误信息 std::cerr << "Failed to load model: " << net.error() << std::endl; return; } ``` 这里,`load()`函数尝试从指定路径加载模型。如果加载失败,会返回错误信息。 4. 预处理输入:对于每个推理请求,你需要准备输入数据,并将其转换为NCNN所需的格式。 5. 进行推理:一旦模型加载成功,你可以调用`forward()`方法来进行推理: ```cpp Mat input_data; // 假设input_data已经填充好了输入数据 net.setInput(input_data); // 设置输入 Mat output; // 存放输出结果 net.forward(&output); // 执行前向传播 ``` 6. 获取结果:最后,你可以从`output`矩阵中提取模型的预测结果。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值