提取caffe和ncnn的权重

本文探讨了在使用腾讯ncnn框架进行灰度图分类时遇到的caffe和ncnn结果不一致的问题。通过提取 caffe 的 caffemodel 和 ncnn 的 bin 文件权重,分析了可能的原因,如权重提取、CMakeLists.txt配置、像素缩放以及resize方法的差异。最终发现问题是由于ncnn resize操作导致的,解决方法是确保在cv::imread时设置正确的flag以匹配原图通道数。
摘要由CSDN通过智能技术生成

之前用腾讯的ncnn的框架做灰度图分类,发现caffe和ncnn的结果不一致。
然后试着将caffe的caffemodel和ncnn的bin文件里面的权重提取出来。
1 提取caffemodel里的参数。

#!/usr/bin/env python

# 引入“咖啡”
import caffe

import numpy as np

# 使输出的参数完全显示
# 若没有这一句,因为参数太多,中间会以省略号“……”的形式代替
np.set_printoptions(threshold='nan')

# deploy文件
MODEL_FILE = 'caffe_deploy.prototxt'
# 预先训练好的caffe模型
PRETRAIN_FILE = 'caffe_iter_10000.caffemodel'

# 保存参数的文件
params_txt = 'params.txt'
pf = open(params_txt, 'w')

# 让caffe以测试模式读取网络参数
net = caffe.Net(MODEL_FILE, PRETRAIN_FILE, caffe.TEST)

# 遍历每一层
for param_name in net.params.keys():
    # 权重参数
    weight = net.params[param_name][0].data
    # 偏置参数
    bias = net.params[param_name][1].data

    # 该层在prototxt文件中对应“top”的名称
    pf.write(param_name)
    pf.write('\n')

    # 写权重参数
    pf.write('\n' + param_name + '_weight:\n\n')
    # 权重参数是多维数组,为了方便输出,转为单列数组
    weight.shape = (-1, 1)

    for w in weight:
        pf.write('%ff, ' % w)

    
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值