Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

原创 2018年04月15日 10:08:20

这篇文章2017年月份就挂载了arxiv上面,一作是CMU的学生,文章应该是投CVPR2018被reject了,没有找到作者的homepage,但是二作在github上面released keras的code https://github.com/michuanhaohao/keras_reid
个人瞎扯:这篇文章我很早就在微信公众号 PaperWeekly上面见过,今天早上忽然想起这篇文章,然后就打算仔细读一下。看这篇文章很重要的一个原因就是因为它比hard triplet loss要好,但是它与state-of-the-art(可能还不是最好的)比的时候在CUHK03 dataset没有提升反而下降了,这可能是被reject的一个原因(个人愚见)。
文章要做的事情(person re-identificatin)
输入:一张图片+dataset      输出:dataset中图片的rank list(retrieval)。

文章在4个datasets上面的实验结果如下表所示。
与metric learning中的loss function的比较
metric learning loss function
与state-of-the-art methods的比较
comparision with state-of-the-art method

trplet loss,quadruplet loss,general quadruplet loss,hard triplet loss以及MSML的公式比较如下所示。
loss function of metric learning methods
文章中给出的相对距离和绝对距离的示意图如下所示。
edge mining samples

Image-to-Image Translation with Conditional Adversarial Networks

CVPR2017年的一篇文章,大名鼎鼎的pix2pix,paper链接https://arxiv.org/abs/1611.07004,一作是MIT的PHD,现在是UC Berkeley的postdo...
  • fuxin607
  • fuxin607
  • 2018-04-14 09:38:15
  • 48

【论文笔记】Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

摘要Person re-identification (ReID) is an important task in computer vision. Recently, deep learning w...
  • qq_21190081
  • qq_21190081
  • 2017-11-07 14:12:22
  • 778

【Person Re-ID】Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

Introduction
  • q295684174
  • q295684174
  • 2017-12-15 16:47:17
  • 682

msml

The Media Server Markup Language (MSML) is used to control and invoke    many different types of ser...
  • knight730
  • knight730
  • 2007-07-31 14:17:00
  • 601

行人检索--Beyond triplet loss: a deep quadruplet network for person re-identification

Beyond triplet loss: a deep quadruplet network for person re-identification CVPR2017 https://arxiv...
  • zhangjunhit
  • zhangjunhit
  • 2017-04-19 14:27:11
  • 2315

Person-reID 行人重识别论文合集

2017CVPR、ICCV和NIPS在Person Reidentification方向的相关工作小结 基于融合特征的行人再识别方法 模式识别与人工智能 2017.3 问题 目前常用的行...
  • u013982164
  • u013982164
  • 2018-03-19 10:22:40
  • 362

论文阅读:Multi-Scale Triplet CNN for Person Re-Identification

中国科技大学的Jiawei Liu等发表在Acm on Multimedia Conference上的论文。作者提出一个多尺度的triplet CNN,在一个数据集Market1501上表现出好的性能...
  • yuanchheneducn
  • yuanchheneducn
  • 2017-03-02 10:55:46
  • 1019

Beyond triplet loss—— Re-ID

一篇讲Person Re-ID的论文,来自CVPR2017,同样是改进了Triplet Loss。《Beyond triplet loss: a deep quadruplet network for...
  • shuzfan
  • shuzfan
  • 2017-04-15 21:55:51
  • 3997

【论文笔记】In Defense of the Triplet Loss for Person Re-Identification

1、前言Triplet loss是非常常用的一种deep metric learning方法,在图像检索领域有非常广泛的应用,比如人脸识别、行人重识别、商品检索等。传统的triplet loss训练需...
  • qq_21190081
  • qq_21190081
  • 2017-11-01 18:46:50
  • 1133
收藏助手
不良信息举报
您举报文章:Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification
举报原因:
原因补充:

(最多只允许输入30个字)