判断两条线段是否相交

说明


包括了一个或多个点重合的情况。
输入点的坐标顺序为Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,判断线段AB与线段CD是否相交。
由于问题比较简单,没有用到向量、叉积什么的,而是用了奇怪的作图法+不证明直接推广法(?)。
可以画个图验证一下。对于稍难的计算几何题,这些奇技淫巧就没有用了。

#include <stdio.h>

int main()
{
    int x1, y1, x2, y2, x3, y3, x4, y4;
    while (~scanf("%d%d%d%d%d%d%d%d", &x1, &y1, &x2, &y2, &x3, &y3, &x4, &y4)){
        double k = 1.0 * (y1 - y2) / (x1 - x2);
        double n = y1 - k * x1;
        double ans1 = k * x3 + n, ans2 = k * x4 + n;
        if ((ans1 <= y3 && ans2 >= y4) || (ans1 >= y3 && ans2 <= y4)) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}
### C# 实现判断两条线段是否相交的算法 为了判断两条线段是否相交,可以采用向量叉积的方法来检测交叉关系。以下是完整的解决方案: #### 判断逻辑 通过计算两个点相对于另一条线段的位置关系,如果一条线段的一个端点位于另一条线段的一侧,而另一个端点位于另一侧,则这两条线段可能相交。具体来说,可以通过以下公式计算点 \(P(x, y)\) 和线段 \((P_0(x_0, y_0), P_1(x_1, y_1))\) 的位置关系[^2]: \[ d = (y - y_0)(x_1 - x_0) - (x - x_0)(y_1 - y_0) \] 当 \(d > 0\) 表示点在左侧;\(d < 0\) 表示点在右侧;\(d = 0\) 表示点在线上。 对于两条线段分别表示为 \([A, B]\) 和 \([C, D]\),需要满足以下条件才能判定它们相交: - 点 A 和点 B 分别位于线段 CD 的两侧; - 点 C 和点 D 分别位于线段 AB 的两侧。 #### 完整代码实现 下面是基于以上理论的 C# 实现代码: ```csharp public class LineSegmentIntersection { public static bool DoIntersect(Point p1, Point p2, Point q1, Point q2) { int o1 = Orientation(p1, p2, q1); int o2 = Orientation(p1, p2, q2); int o3 = Orientation(q1, q2, p1); int o4 = Orientation(q1, q2, p2); if (o1 != o2 && o3 != o4) return true; if (o1 == 0 && OnSegment(p1, q1, p2)) return true; if (o2 == 0 && OnSegment(p1, q2, p2)) return true; if (o3 == 0 && OnSegment(q1, p1, q2)) return true; if (o4 == 0 && OnSegment(q1, p2, q2)) return true; return false; } private static int Orientation(Point p, Point q, Point r) { double val = (q.Y - p.Y) * (r.X - q.X) - (q.X - p.X) * (r.Y - q.Y); if (val > 0) return 1; // Clockwise orientation if (val < 0) return 2; // Counterclockwise orientation return 0; // Collinear orientation } private static bool OnSegment(Point p, Point q, Point r) { return q.X <= Math.Max(p.X, r.X) && q.X >= Math.Min(p.X, r.X) && q.Y <= Math.Max(p.Y, r.Y) && q.Y >= Math.Min(p.Y, r.Y); } } public struct Point { public double X { get; set; } public double Y { get; set; } public Point(double x, double y) { X = x; Y = y; } } ``` 此方法的核心在于 `Orientation` 函数用于确定三点之间的方向关系,以及 `OnSegment` 方法验证某一点是否线段范围内[^2]。 ### 结论 上述代码能够有效判断两条线段是否相交,并考虑了共线情况下的特殊情况处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值