tf.layers.dense

全连接层fc 

tf.layers.dense(
    inputs,
    units,
    activation=None,
    use_bias=True,
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    trainable=True,
)

● inputs:输入
● units: 输出维数
● activation: 使用什么激活函数(神经网络的非线性层),
● use_bias: 该层是否使用偏差(默认使用True)
● kernel_initializer:权重矩阵的初始化函数。 如果为None(默认值),则使用tf.get_variable使用的默认初始化程序初始化权重。
● bias_initializer:bias的初始化函数。
● kernel_regularizer:权重矩阵的正则函数。
● bias_regularizer:bias的的正则函数。
● activity_regularizer:输出的的正则函数。
● kernel_constraint:可选,默认为 None,施加在权重上的约束项

一般只用到前三个参数,对于

tf.layers.dense(inputs,units)

会在内部自动生成一个权矩阵kernel 和偏移项bias,例如:尺寸为[m, n]的二维张量input, tf.layers.dense(input,k)会生成:尺寸为[n, k]的权矩阵,和尺寸为[m, k] 的偏移项。内部的计算过程为y = input * kernel + bias,输出值y的维度为[m, k]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值