维度和axis

本文介绍了如何解析和理解多维数组的形状以及轴的概念。通过示例解释了如何根据shape读取数组维度,并展示了在TensorFlow中使用`tf.expand_dims`进行维度扩展的操作。内容涵盖了数组的四维向量表示,以及通过axis参数选择不同维度进行切片的技巧。
摘要由CSDN通过智能技术生成

1 如何看shape:看括号

array([[[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]]]])
#[1,2,3,4]

从[[[[可知是四维向量,第一个 [ 不看,第二个[ 括号的个数为1,第三个[ 括号的个数为2,第四个[ 括号的个数为3,括号里有四个数。故shape为[1,2,3,4]。

2如何看axis:看shape,看括号

shape = (    1,    2,     3,     4     )
             |      |     |      |
axis  =      0,     1,    2,   3==-1
a=array([[[1],
          [9],
          [5]],

         [[5],
          [7],
          [1]]])

#b=a[1,:,:] 即取axis=0的第1+1个维度
b=array([[[5],
          [7],
          [1]]])

#c=a[:,:,2] 即取axis=2的第2+1个维度
不存在
a=array([[[2, 7],
          [9, 3],
          [9, 5]],

         [[1, 9],
          [2, 9],
          [5, 5]]])

#b=a[:,:,1] 即取axis=2的第1+1个维度

b=array([[7,3,5],
         [9,9,5]])

 

拓展维度: tf.expand_dims()_GungnirsPledge的博客-CSDN博客_tf 扩展维度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值