前言
现在要使用Pytorch中自带的torch.nn.CosineSimilarity函数计算两个高维特征图(B,C,H,W)中各个像素位置的特征相似度,即特征图中的每个像素位置上的一个(B,C,1,1)的向量为该位置的特征,总共有BxHxW个特征。
一、官方函数用法

意思是 dim参数指定了函数在哪个维度上进行余弦距离计算,计算之后该维度会消失,而其他维度的形状保持不变。但是现有的大多数博客将dim的用法复杂化,因此这里进行简单的实验验证,来验证一下上述说法。
二、实验验证
1.计算高维数组中各个像素位置的余弦距离
创造高维数组,在通道维度(即dim=1)上进行向量的余弦距离计算,并查看其中第一批数据中的位置(0,0)
PyTorch中CosineSimilarity计算高维特征相似度

最低0.47元/天 解锁文章
1607





