安装tensorflow-gpu 1.12.0

目录

项目场景:

问题描述1

CUDA版本不匹配,需要重新安装

解决方案1:

额外安装其他版本的CUDA,并实现版本自由切换。

问题描述2:

1. cuDNN包解压后的cudnn.h文件无法复制到目标文件夹中

2. 如何查看是否会到最初版本的CUDA

解决方案2:

1. cudnn.h无法复制

2. 回到最初版本的CUDA

问题描述3:

tensorflow-gpu 1.12.0安装不断出现意外

解决方案3:

1. 方式一(更推荐方式二,下载速度翻倍)

 2. 方式二

最终测试



项目场景:

现在需要在NVIDIA RTX3090显卡上运行一个tensorflow 1.x的程序,具体配置如下:

版本选择越新越好,因此选择安装tensorflow-gpu 1.12.0。在安装的过程中,陆续会碰到三个问题,我将在下面依次列出并给予解答。


问题描述1

CUDA版本不匹配,需要重新安装

在安装tensorflow-gpu 1.12.0之前,需要查看该版本的tensorflow所需搭配的CUDA 和cuDNN版本如下:

使用nvidia-smi命令查看当前CUDA版本为11.2:

因此需要在非root条件下,为当前用户额外安装CUDA 9.0和对应的cuDNN 7.1,否则tensorflow 1.12.0根本无法使用。例如,在python交互式命令行中引入tensorflow如下:

import tensorflow

会得到以下报错信息:

这就提示我们需要在CUDA 9.0的环境下才能正常使用tensorflow-gpu 1.12.0。


解决方案1:

额外安装其他版本的CUDA,并实现版本自由切换。

强烈推荐这篇博客:

非root用户在linux下安装多个版本的CUDA和cuDNN(cuda 8、cuda 10.1 等)_随性拂尘倾心的博客-CSDN博客按照他的步骤去做就能很顺利地在多个CUDA版本间自由切换了。


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值