目录
1. cuDNN包解压后的cudnn.h文件无法复制到目标文件夹中
项目场景:
现在需要在
NVIDIA RTX3090显卡上运行一个tensorflow 1.x的程序,具体配置如下:
版本选择越新越好,因此选择安装tensorflow-gpu 1.12.0。在安装的过程中,陆续会碰到三个问题,我将在下面依次列出并给予解答。
问题描述1
CUDA版本不匹配,需要重新安装
在安装tensorflow-gpu 1.12.0之前,需要查看该版本的tensorflow所需搭配的CUDA 和cuDNN版本如下:
使用nvidia-smi命令查看当前CUDA版本为11.2:
因此需要在非root条件下,为当前用户额外安装CUDA 9.0和对应的cuDNN 7.1,否则tensorflow 1.12.0根本无法使用。例如,在python交互式命令行中引入tensorflow如下:
import tensorflow
会得到以下报错信息:
这就提示我们需要在CUDA 9.0的环境下才能正常使用tensorflow-gpu 1.12.0。
解决方案1:
额外安装其他版本的CUDA,并实现版本自由切换。
强烈推荐这篇博客:
非root用户在linux下安装多个版本的CUDA和cuDNN(cuda 8、cuda 10.1 等)_随性拂尘倾心的博客-CSDN博客按照他的步骤去做就能很顺利地在多个CUDA版本间自由切换了。