在线教育行业的新发展

如今人们讨论起2020年在商业场上发生的大事件时,在线教育必然是一个绕不开的话题,很多数据表明无数目光和无数热钱正在涌入这个行业,比如据安信证券数据,在线教育营销费用都趋于40%~50%之间。资本市场也持续地围绕着“在线教育”加码,有媒体统计2020年一整年发生了91起融资,总额高达512亿元。
所以你很容易在很多关于2021年互联网行业大趋势的预测里,看到人们对于“在线教育”的依然青睐,原因非常直观:如果说一个新兴行业的成长需要必要的基建过程,为未来的发展扎好篱笆,那么“在线教育”显然在疫情环境下大大加速了整个过程。

在这种情况下,“被动”拥有“先天优势”的在线教育,太容易在2021年继续高歌猛进了。

回头来细品过去一年在线教育的起步,很多人也有理由在“乐观”之前修饰一个“谨慎”的定语。毕竟在线教育先天自带的很多问题,似乎并没有“烧钱大战”中得到充分解决。

“在线教育”行业在2020年加速发展的原因无需赘述,疫情、学历焦虑、竞争内卷等关键词共同决定了“迅速站上风口”成为一种必然。而这种“必然”发展到2021年初,意味着行业的天花板已经呈现出完全不同的面貌:

首先从数据来看,在线教育已经成为了一门标准的“大众生意”。易观智库数据统计最新统计数据就显示,2020年全国线上教育参与率已经达到了39%,在线教育市场规模将达到4293亿元;在艾媒咨询的数据也预测,2020年中国在线教育市场规模将达到4858亿元,用户超3.51亿人。

与之对应的是在线教育领域逐渐丰富的产品形态:

打包大班教学到精致小班、从K12教育到考研和职业教育,“在线教育”的行业包容性正在变得越来越大,而丰富的赛道则让整个行业的社会分工从之前的“消费升级”悄然转变为了“刚需”,即在线教育更多分担了线下教育的职能,开始更多地、有效地为升学、职业技能等强需求挂钩。

其次行业之外,在线教育产品的表现能力也获得了前所未有的提升机会。比如迅速铺开的5G新基建不仅仅意味着更快的网速,还意味原本停留在概念里的许多智能场景开始成为可能。

而在各种因素的推动下,大众对于“在线教育”的接受程度也不断提升,甚至开始不断破圈。“在线教育”逐渐增多的广告、晚会、综艺的露出是这一个新趋势的直观体现:

从去年开始,几家在线教育巨头就曾在一个暑假里烧掉了40-50亿的营销费,少儿英语、少儿编程等教育巨头的广告不断出现在各大综艺节目和晚会中。这种趋势也延续到了今年。

在这里插入图片描述

不过值得细聊的地方也在这里:在线教育行业的投入力度已经几何倍于其他行业,但整个行业似乎距离“终局”还有一段距离——什么样的产品形态是最理想的形态?在线教育相比于线下教育的核心竞争力到底是什么?线下教育还有哪些不可替代的地方?

这些问题显然还没有答案。也有不少人开始思考“终局还有一段距离”的原因。

葛文伟就认为,2020年在线教育行业陷入同质化的竞争,流量增长的曲线变缓导致了焦虑和“内卷”的发生,各家都估错了市场客户和细分目标而忽略了教育品牌获得超额利润的来源。

有些人则认为在线教育连“供给侧”问题都没有解决好,1月18日“教育机构请了同一位演员扮演不同学科的资深教师”热搜就是集中体现。

从师资乱象、过度营销乱象的冰山一角还折射出了更深层次原因,即内容分发和内容制造方有了严重的脱节。

教师本人只能被动地投靠大的教育机构,教育机构面对来势汹汹的在线教育也被动的增加营销投入,在线教育各大公司为了抢占渠道也被迫进行烧钱大战,家长和学生也很焦虑。于是,作假就很常见于整体焦虑的行业里。

课程同质化严重也是其中一个问题,在面对流量增长放缓这一预测下,在线教育行业的焦虑促使每家机构都在进行并购和扩科。而扩科的结果,就只是每家机构都在做全科教育,却没有再扩展裂变出更细分的内容赛道。

在线学习体验最广为诟病的是与线下上课体验相差巨大。在线教育行业中,“在线”的技术只解决了场景迁移,而从教育硬件、内容、交付和应用等方面来说,科技系统对教育的帮助则没有那么明显。

没有技术赋能的内容生产方(即教师端)依然沿用着线下模式的那种课程内容供应链。大班教学还是小班教学?除了教学方式的不同,各家在线教育平台之间并无特别显著的差别。

在这里插入图片描述

通过对在线教育行业的现状复盘,实际上我们不难得到这样一个判断:

在线教育行业并非依然停留在从0到1的初级阶段,漫长而线性的积累搭建出可观的规模,行业接下去要比拼的不再局限于交互模式、教学内容,硬件上的教学工具、教学软件设计、甚至资金规模、运营效率和组织架构都将成为决定性的变量。

并且可以预见的是,这个“1到100”的过程并不是稳定的,变量正在不断增加。

仅仅是投入不够坚决这一项,就曾经在K12行业里淘汰过很多玩家。因此在很大程度上,“有钱可用”仍是获客阶段的最具性价比策略,也是企业心中熬下去的理想竞争方式之一。

另一个容易被2020年发展节奏带跑偏的地方是:当我们在谈论在线教育行业时,往往局限于某一垂直领域的单一功能性产品,这显然忽略了另一个重要的产品形态——平台型产品(或者叫“产品生态”)。

理论上,垂直产品在新生领域内往往拥有非常明显的优势:比如在不需要考虑“兼容大众市场”的情况下,它能够更精准更深度地满足受众需求。这样定位的产品,往往也拥有个体价值更高、需求更为硬核的用户,也往往因此更容易获得“新生领域”的定义权。

我们不难发现,在线教育并不是个完美的“新生领域”——他够新、需要新的技术和思维模式来支撑,但它对接大众市场的速度也足够快,消费场景的落地也足够“猛”——这导致整个行业“容错率”相当小,“教育”这个特殊的消费场景更缺乏“试验田”色彩。

因此在这种情况下,“平台产品”、“生态产品”的协作能力很有可能在2021年被放大,人们需要强调“兜底下限”的能力。

说到底,“教育”并不是什么陌生的消费场景,该场景拥有稳定的需求,在线教育是线下教辅机构的延伸,两者之间并不存在本质上的区别,也决定了在线教育不应该仅仅将自己定位为“消费升级产品”或者“替代性产品”,近两三年的行业变动也不能定义整个行业的发展。

行业里只要有痛点,就会不断有新的模式,新的机构找准痛点来逐步完善这个行业。类似于平台产品对于垂类产品的颠覆,或许随着2020年的高速发展帮助人们找准了行业痛点,必然会更多地创新价值,推动在线教育行业整体健康发展,未来非常值得我们期待。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值