旋转位置编码(RoPE)详解:从一维序列到三维空间

旋转位置编码(Rotary Position Embedding, RoPE)作为一种新颖的相对位置编码技术,因其能将位置信息以旋转变换的方式融入嵌入向量,并自然地在自注意力机制中体现相对位置关系而备受关注。本文将详细介绍 RoPE 的基本原理、实现方式,并探讨其向三维空间的扩展——3D RoPE。

一、详解旋转位置编码(RoPE)的定义

旋转位置编码(Rotary Position Embedding,RoPE)是一种用于 Transformer 模型的相对位置编码技术,它通过旋转变换将位置信息融入到嵌入向量中,从而增强模型对序列中相对位置信息的捕获能力。

1. 频率参数的定义

假设嵌入向量的维度为 D D D(为偶数)。

首先,定义一组频率参数 ω k \omega_k ωk,用于确定各个维度上的位置编码频率:

ω k = 1000 0 − 2 k / D , k = 0 , 1 , 2 , … , D 2 − 1 \omega_k = 10000^{-2k / D}, \quad k = 0, 1, 2, \dots, \frac{D}{2} - 1 ωk=100002k/D,k=0,1,2,,2D1

  • 解释:
    • ω k \omega_k ωk 是第 k k k 个频率参数。
    • D D D 是嵌入维度。
    • k k k 0 0 0 D 2 − 1 \frac{D}{2} - 1 2D1,总共有 D 2 \frac{D}{2} 2D 个频率参数。
    • 指数中的 − 2 k / D -2k / D 2k/D 确保频率参数在不同的维度上呈指数级变化。

2. 旋转矩阵的定义

对于序列中的每个位置 i i i,我们定义一个二维的旋转矩阵。由于嵌入维度为 D D D,我们可以将嵌入向量划分为 D 2 \frac{D}{2} 2D 个二维子空间。对每个子空间,都使用一个旋转矩阵。

对于位置 i i i 上的第 k k k 个二维子空间,旋转角度为:

θ k ( i ) = ω k ⋅ i \theta_k(i) = \omega_k \cdot i θk(i)=ωki

  • 解释:
    • θ k ( i ) \theta_k(i) θk(i) 是位置 i i i 上第 k k k 个子空间的旋转角度。
    • ω k \omega_k ωk 是对应的频率参数。
    • i i i 是位置索引,从 0 0 0 开始。

定义位置 i i i 的旋转矩阵 R θ k ( i ) R_{\theta_k(i)} Rθk(i)

R θ k ( i ) = ( cos ⁡ ( θ k ( i ) ) − sin ⁡ ( θ k ( i ) ) sin ⁡ ( θ k ( i ) ) cos ⁡ ( θ k ( i ) ) ) R_{\theta_k(i)} = \begin{pmatrix} \cos\left( \theta_k(i) \right) & -\sin\left( \theta_k(i) \right) \\ \sin\left( \theta_k(i) \right) & \cos\left( \theta_k(i) \right) \end{pmatrix} Rθk(i)=(cos(θk(i))sin(θk(i))sin(θk(i))cos(θk(i)))

整体的旋转矩阵 R θ ( i ) R_{\theta}(i) Rθ(i) 可以表示为一个块对角矩阵,由 D 2 \frac{D}{2} 2D 2 × 2 2 \times 2 2×2 的旋转矩阵构成:

R θ ( i ) = ( R θ 0 ( i ) R θ 1 ( i ) ⋱ R θ D / 2 − 1 ( i ) ) R_{\theta}(i) = \begin{pmatrix} R_{\theta_0(i)} & & & \\ & R_{\theta_1(i)} & & \\ & & \ddots & \\ & & & R_{\theta_{D/2 -1}(i)} \end{pmatrix} Rθ(i)= Rθ0(i)Rθ1(i)RθD/21(i)

  • 解释:
    • R θ ( i ) R_{\theta}(i) Rθ(i) 是一个 D × D D \times D D×D 的矩阵,每个 2 × 2 2 \times 2 2×2 的旋转矩阵对应嵌入向量的一个二维子空间。

3. 对嵌入向量进行旋转变换

对于每个位置 i i i 的嵌入向量 x i \mathbf{x}_i xi,进行旋转变换:

x ~ i = R θ ( i ) ⋅ x i \tilde{\mathbf{x}}_i = R_{\theta}(i) \cdot \mathbf{x}_i x~i=Rθ(i)xi

  • 解释:
    • x i \mathbf{x}_i xi 是位置 i i i 的嵌入向量,维度为 D D D
    • x ~ i \tilde{\mathbf{x}}_i x~i 是经过旋转位置编码后的嵌入向量。
    • R θ ( i ) R_{\theta}(i) Rθ(i) 对嵌入向量 x i \mathbf{x}_i xi 进行旋转,将位置信息编码进向量中。

维度分组:

  • 将嵌入向量 x i \mathbf{x}_i xi 的维度按照每两个维度进行分组。
  • 即,第 k k k 个二维子向量为:

( x i ( 2 k ) x i ( 2 k + 1 ) ) \begin{pmatrix} x_i^{(2k)} \\ x_i^{(2k+1)} \end{pmatrix} (xi(2k)xi(2k+1))

对每个二维子向量,应用对应的旋转矩阵 R θ k ( i ) R_{\theta_k(i)} Rθk(i)


4. 数学公式的展开

对于位置 i i i 和第 k k k 个二维子向量,旋转变换可以具体表示为:
( x ~ i ( 2 k ) x ~ i ( 2 k + 1 ) ) = ( cos ⁡ ( θ k ( i ) ) − sin ⁡ ( θ k ( i ) ) sin ⁡ ( θ k ( i ) ) cos ⁡ ( θ k ( i ) ) ) ( x i ( 2 k ) x i ( 2 k + 1 ) ) \begin{pmatrix} \tilde{x}_i^{(2k)} \\ \tilde{x}_i^{(2k+1)} \end{pmatrix} = \begin{pmatrix} \cos\left( \theta_k(i) \right) & -\sin\left( \theta_k(i) \right) \\ \sin\left( \theta_k(i) \right) & \cos\left( \theta_k(i) \right) \end{pmatrix} \begin{pmatrix} x_i^{(2k)} \\ x_i^{(2k+1)} \end{pmatrix} (x~i(2k)x~i(2k+1))=(cos(θk(i))sin(θk(i))sin(θk(i))cos(θk(i)))(xi(2k)xi(2k+1))

展开后得到:

{ x ~ i ( 2 k ) = x i ( 2 k ) cos ⁡ ( θ k ( i ) ) − x i ( 2 k + 1 ) sin ⁡ ( θ k ( i ) ) x ~ i ( 2 k + 1 ) = x i ( 2 k ) sin ⁡ ( θ k ( i ) ) + x i ( 2 k + 1 ) cos ⁡ ( θ k ( i ) ) \begin{cases} \tilde{x}_i^{(2k)} = x_i^{(2k)} \cos\left( \theta_k(i) \right) - x_i^{(2k+1)} \sin\left( \theta_k(i) \right) \\[10pt] \tilde{x}_i^{(2k+1)} = x_i^{(2k)} \sin\left( \theta_k(i) \right) + x_i^{(2k+1)} \cos\left( \theta_k(i) \right) \end{cases} x~i(2k)=xi(2k)cos(θk(i))xi(2k+1)sin(θk(i))x~i(2k+1)=xi(2k)sin(θk(i))+xi(2k+1)cos(θk(i))

  • 解释:
    • 经过旋转变换后,嵌入向量的第 2 k 2k 2k 和第 2 k + 1 2k+1 2k+1 维度的分量被重新组合,引入了位置信息。
    • 这相当于将二维向量 ( x i ( 2 k ) x i ( 2 k + 1 ) ) \begin{pmatrix} x_i^{(2k)} \\ x_i^{(2k+1)} \end{pmatrix} (xi(2k)xi(2k+1)) 绕原点旋转了角度 θ k ( i ) \theta_k(i) θk(i)

5. 旋转变换的意义

通过上述旋转变换,将位置信息以旋转的形式编码进嵌入向量中。

  • 相对位置信息:

    • 在后续的自注意力计算中,查询 q ~ i \tilde{\mathbf{q}}_i q~i 和键 k ~ j \tilde{\mathbf{k}}_j k~j 的点积中天然地包含了位置 i i i j j j 之间的相对位置信息。
    • 这使得模型能够捕获序列中元素之间的相对关系,而不仅仅是绝对位置。
  • 旋转编码的优势:

    • 旋转变换是等距变换,不改变向量的模长。
    • 在保持原始嵌入向量信息的同时,融入了位置信息。

6. 实现示例

在实际实现中,通常会采用向量化的方式对整个批次的数据进行处理。以下是实现步骤:

  1. 计算频率参数 ω k \omega_k ωk

    import torch
    import math
    
    D = embedding_dim  # 嵌入维度,假设为偶数
    half_D = D // 2
    k = torch.arange(half_D, dtype=torch.float32)  # (D/2,)
    omega = 10000 ** (-2 * k / D)  # (D/2,)
    
  2. 计算旋转角度 θ k ( i ) \theta_k(i) θk(i)

    对于输入序列长度为 L L L,位置索引 i i i 0 0 0 L − 1 L - 1 L1

    positions = torch.arange(L, dtype=torch.float32).unsqueeze(1)  # (L, 1)
    theta = positions * omega.unsqueeze(0)  # (L, D/2)
    
  3. 计算 sin ⁡ \sin sin cos ⁡ \cos cos

    sin_theta = torch.sin(theta)  # (L, D/2)
    cos_theta = torch.cos(theta)  # (L, D/2)
    
  4. 对嵌入向量进行旋转变换:

    • 假设嵌入向量 x \mathbf{x} x 的形状为 ( batch_size , L , D ) (\text{batch\_size}, L, D) (batch_size,L,D)

      x = embeddings  # (batch_size, L, D)
      x = x.to(torch.float32)  # 确保数据类型为浮点型
      
    • 将嵌入向量拆分为偶数和奇数维度:

      x_even = x[:, :, ::2]  # (batch_size, L, D/2)
      x_odd = x[:, :, 1::2]  # (batch_size, L, D/2)
      
    • 调整 sin ⁡ θ \sin\theta sinθ cos ⁡ θ \cos\theta cosθ 的形状以匹配 x x x

      sin_theta = sin_theta.unsqueeze(0)  # (1, L, D/2)
      cos_theta = cos_theta.unsqueeze(0)  # (1, L, D/2)
      
    • 应用旋转变换:

      x_rotated_even = x_even * cos_theta - x_odd * sin_theta  # (batch_size, L, D/2)
      x_rotated_odd = x_even * sin_theta + x_odd * cos_theta   # (batch_size, L, D/2)
      
    • 合并旋转后的结果:

      x_rotated = torch.zeros_like(x)
      x_rotated[:, :, ::2] = x_rotated_even
      x_rotated[:, :, 1::2] = x_rotated_odd
      
    • 最终得到旋转编码后的嵌入向量 x ~ \tilde{\mathbf{x}} x~

      • x ~ = x rotated \tilde{\mathbf{x}} = x_{\text{rotated}} x~=xrotated,形状为 ( batch_size , L , D ) (\text{batch\_size}, L, D) (batch_size,L,D)

7. 总结

  • 旋转位置编码通过对嵌入向量进行位置相关的旋转变换,将位置信息以乘法的方式融入到向量中,而不是像传统位置编码那样通过加法。

  • 这种方法的优点在于:

    • 高效地编码相对位置信息,有助于模型理解序列中的相对关系。
    • 实现简单,仅需少量的张量操作,不引入额外的参数。

8. 示例代码

下面提供一个完整的 Python 实现示例:

import torch
import math

def apply_rope(x):
    """
    对输入嵌入向量 x 应用旋转位置编码(RoPE)。

    参数:
    - x: 输入嵌入向量,形状为 (batch_size, seq_len, D),D 必须为偶数。

    返回:
    - x_rotated: 经过 RoPE 编码的嵌入向量,形状与 x 相同。
    """
    batch_size, seq_len, D = x.shape
    device = x.device
    half_D = D // 2

    # 1. 计算频率参数 omega_k
    k = torch.arange(half_D, dtype=torch.float32, device=device)  # (D/2,)
    omega = 10000 ** (-2 * k / D)  # (D/2,)

    # 2. 计算旋转角度 theta_k(i)
    positions = torch.arange(seq_len, dtype=torch.float32, device=device).unsqueeze(1)  # (seq_len, 1)
    theta = positions * omega.unsqueeze(0)  # (seq_len, D/2)

    # 3. 计算 sin 和 cos
    sin_theta = torch.sin(theta)  # (seq_len, D/2)
    cos_theta = torch.cos(theta)  # (seq_len, D/2)

    # 4. 将嵌入向量拆分为偶数和奇数维度
    x_even = x[:, :, ::2]  # (batch_size, seq_len, D/2)
    x_odd = x[:, :, 1::2]  # (batch_size, seq_len, D/2)

    # 5. 调整 sin_theta 和 cos_theta 形状
    sin_theta = sin_theta.unsqueeze(0)  # (1, seq_len, D/2)
    cos_theta = cos_theta.unsqueeze(0)  # (1, seq_len, D/2)

    # 6. 应用旋转变换
    x_rotated_even = x_even * cos_theta - x_odd * sin_theta
    x_rotated_odd = x_even * sin_theta + x_odd * cos_theta

    # 7. 合并旋转后的结果
    x_rotated = torch.zeros_like(x)
    x_rotated[:, :, ::2] = x_rotated_even
    x_rotated[:, :, 1::2] = x_rotated_odd

    return x_rotated

# 示例使用
batch_size = 2
seq_len = 5
D = 8  # 嵌入维度,必须为偶数
x = torch.randn(batch_size, seq_len, D)  # 随机初始化嵌入向量

x_rope = apply_rope(x)  # 应用 RoPE 编码

9. 在自注意力机制中的应用

在 Transformer 模型中,通常在计算自注意力的查询向量 Q \mathbf{Q} Q 和键向量 K \mathbf{K} K 时,对它们应用 RoPE 编码。

  • 步骤:

    1. 计算嵌入向量 X \mathbf{X} X 后,通过线性层得到 Q \mathbf{Q} Q K \mathbf{K} K
    2. Q \mathbf{Q} Q K \mathbf{K} K 应用 RoPE 编码,得到 Q ~ \tilde{\mathbf{Q}} Q~ K ~ \tilde{\mathbf{K}} K~
    3. 使用 Q ~ \tilde{\mathbf{Q}} Q~ K ~ \tilde{\mathbf{K}} K~ 计算自注意力得分。
  • 注意:

    • RoPE 编码不应用于值向量 V \mathbf{V} V
    • 在多头注意力的实现中,需要对每一个头的 Q \mathbf{Q} Q K \mathbf{K} K 分别应用 RoPE 编码。

10. 结论

  • RoPE(旋转位置编码) 通过对嵌入向量进行旋转变换,巧妙地将位置信息融入到向量中,大大增强了模型对相对位置信息的捕获能力。

  • 实现简单高效:只需在相关张量上进行几次张量操作,无需额外参数,且兼容现有的 Transformer 架构。

  • 实际效果显著:在处理长序列、需要建模相对位置信息的任务中,RoPE 通常能带来性能的提升。

二、扩展到三维:3D RoPE

原始的 RoPE 主要针对一维序列数据,例如文本。然而,在处理三维数据(如三维点云、视频数据或三维图像)时,需要扩展原有的 RoPE 方法,以适应三维空间中的位置编码。这就是 3D RoPE


1. 3D RoPE 的必要性

在处理三维数据时,模型需要捕获输入数据在三维空间中的位置信息。例如,对于点云中的点,需要知道它们在 x x x y y y z z z 三个方向上的位置信息。使用适当的位置信息编码,可以帮助模型更好地理解数据的空间结构,提高模型的性能。


2. 3D RoPE 的原理

2.1 三维位置编码

与一维序列中的位置不同,三维数据中的位置由三个坐标表示: i i i, j j j, k k k,对应于空间中的 x x x y y y z z z 轴。因此,需要为每个坐标方向分别引入旋转位置编码。

2.2 多维旋转矩阵

为了在三维空间中应用旋转位置编码,需要使用高维的旋转矩阵。对于每个位置 ( i , j , k ) (i, j, k) (i,j,k),我们定义三个旋转角度:

θ x = ω x ⋅ i θ y = ω y ⋅ j θ z = ω z ⋅ k \theta_x = \omega_x \cdot i \\ \theta_y = \omega_y \cdot j \\ \theta_z = \omega_z \cdot k θx=ωxiθy=ωyjθz=ωzk

其中, ω x \omega_x ωx ω y \omega_y ωy ω z \omega_z ωz 是在三个坐标轴上预定义的频率参数。

2.3 定义旋转操作

由于嵌入向量的维度 D D D 通常为偶数,我们可以将其划分为三元组,每三个维度为一组。对于每个三维子空间,我们应用三维空间的旋转操作。

三维旋转变换需要使用三维旋转矩阵。三维旋转矩阵可以表示为绕 x x x y y y z z z 轴的旋转矩阵的组合。对于简化计算,我们可以分别在每个二维平面上进行旋转。


3. 3D RoPE 的实现方法

3.1 频率参数的定义

首先,定义一组频率参数:

ω k = 1000 0 − 2 k / D , k = 0 , 1 , 2 , … , D 3 − 1 \omega_k = 10000^{-2k / D}, \quad k = 0, 1, 2, \dots, \frac{D}{3} - 1 ωk=100002k/D,k=0,1,2,,3D1

这里, D D D 是嵌入向量的维度,假设可以被 3 整除。

3.2 计算旋转角度

对于位置 ( i , j , k ) (i, j, k) (i,j,k),旋转角度定义为:

θ k x = ω k ⋅ i θ k y = ω k ⋅ j θ k z = ω k ⋅ k \theta_k^x = \omega_k \cdot i \\ \theta_k^y = \omega_k \cdot j \\ \theta_k^z = \omega_k \cdot k θkx=ωkiθky=ωkjθkz=ωkk

3.3 应用旋转变换

将嵌入向量 x n \mathbf{x}_n xn n n n 表示样本索引)分为三部分,每部分维度为 D / 3 D/3 D/3

x n = [ x n x , x n y , x n z ] \mathbf{x}_n = [\mathbf{x}_n^{x}, \mathbf{x}_n^{y}, \mathbf{x}_n^{z}] xn=[xnx,xny,xnz]

对于每个部分,应用对应的旋转变换。例如,对于 x n x \mathbf{x}_n^{x} xnx,应用绕 x x x 轴的旋转;对于 x n y \mathbf{x}_n^{y} xny,应用绕 y y y 轴的旋转;对于 x n z \mathbf{x}_n^{z} xnz,应用绕 z z z 轴的旋转。

旋转公式如下(以 x x x 轴为例):
( x ~ n ( 3 k ) x ~ n ( 3 k + 1 ) x ~ n ( 3 k + 2 ) ) = R θ k x ( x n ( 3 k ) x n ( 3 k + 1 ) x n ( 3 k + 2 ) ) \begin{pmatrix} \tilde{x}_n^{(3k)} \\ \tilde{x}_n^{(3k+1)} \\ \tilde{x}_n^{(3k+2)} \end{pmatrix} = R_{\theta_k}^x \begin{pmatrix} x_n^{(3k)} \\ x_n^{(3k+1)} \\ x_n^{(3k+2)} \end{pmatrix} x~n(3k)x~n(3k+1)x~n(3k+2) =Rθkx xn(3k)xn(3k+1)xn(3k+2)

其中, R θ k x R_{\theta_k}^x Rθkx 是绕 x x x 轴的旋转矩阵,定义为:

R θ k x = ( 1 0 0 0 cos ⁡ ( θ k x ) − sin ⁡ ( θ k x ) 0 sin ⁡ ( θ k x ) cos ⁡ ( θ k x ) ) R_{\theta_k}^x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_k^x) & -\sin(\theta_k^x) \\ 0 & \sin(\theta_k^x) & \cos(\theta_k^x) \end{pmatrix} Rθkx= 1000cos(θkx)sin(θkx)0sin(θkx)cos(θkx)

同理,可以定义绕 y y y 轴和 z z z 轴的旋转矩阵 R θ k y R_{\theta_k}^y Rθky R θ k z R_{\theta_k}^z Rθkz

3.4 综合旋转

最终的旋转变换可以表示为旋转矩阵的组合:

x ~ n = R θ k z ⋅ R θ k y ⋅ R θ k x ⋅ x n \tilde{\mathbf{x}}_n = R_{\theta_k}^z \cdot R_{\theta_k}^y \cdot R_{\theta_k}^x \cdot \mathbf{x}_n x~n=RθkzRθkyRθkxxn

这种结合方式可以将三个方向上的位置信息编码进嵌入向量中。


4. 3D RoPE 的实现示例

4.1 PyTorch 实现

下面是一个使用 PyTorch 实现 3D RoPE 的示例代码:

import torch
import math

def apply_3d_rope(x, positions):
    """
    对输入嵌入向量 x 应用 3D RoPE 编码。

    参数:
    - x: 输入嵌入向量,形状为 (batch_size, seq_len, D),其中 D 能被 6 整除。
    - positions: 位置张量,形状为 (batch_size, seq_len, 3),包含 (i, j, k) 位置。

    返回:
    - x_rotated: 经过 3D RoPE 编码的嵌入向量,形状与 x 相同。
    """
    batch_size, seq_len, D = x.shape
    device = x.device
    assert D % 6 == 0, "Embedding dimension must be divisible by 6 for 3D RoPE."
    D_div_6 = D // 6  # 每个坐标轴各自占据两个部分,共6个部分

    # 1. 计算频率参数 omega_k
    k = torch.arange(D_div_6, dtype=torch.float32, device=device)  # (D/6,)
    omega = 10000 ** (-2 * k / D_div_6)  # (D/6,)

    # 2. 获取位置坐标 i, j, k
    pos_i = positions[:, :, 0]  # (batch_size, seq_len)
    pos_j = positions[:, :, 1]
    pos_k = positions[:, :, 2]

    # 3. 计算旋转角度 theta_k^x, theta_k^y, theta_k^z
    theta_x = pos_i.unsqueeze(-1) * omega  # (batch_size, seq_len, D/6)
    theta_y = pos_j.unsqueeze(-1) * omega
    theta_z = pos_k.unsqueeze(-1) * omega

    # 4. 计算 sin 和 cos
    sin_theta_x = torch.sin(theta_x)
    cos_theta_x = torch.cos(theta_x)
    sin_theta_y = torch.sin(theta_y)
    cos_theta_y = torch.cos(theta_y)
    sin_theta_z = torch.sin(theta_z)
    cos_theta_z = torch.cos(theta_z)

    # 5. 将嵌入向量拆分为六部分
    x_x1 = x[:, :, :D_div_6]        # (batch_size, seq_len, D/6)
    x_x2 = x[:, :, D_div_6:2*D_div_6]
    x_y1 = x[:, :, 2*D_div_6:3*D_div_6]
    x_y2 = x[:, :, 3*D_div_6:4*D_div_6]
    x_z1 = x[:, :, 4*D_div_6:5*D_div_6]
    x_z2 = x[:, :, 5*D_div_6:]

    # 6. 对每一对部分应用对应的旋转变换

    # 绕 x 轴旋转
    x_rotated_x1 = x_x1 * cos_theta_x - x_x2 * sin_theta_x
    x_rotated_x2 = x_x1 * sin_theta_x + x_x2 * cos_theta_x

    # 绕 y 轴旋转
    x_rotated_y1 = x_y1 * cos_theta_y - x_y2 * sin_theta_y
    x_rotated_y2 = x_y1 * sin_theta_y + x_y2 * cos_theta_y

    # 绕 z 轴旋转
    x_rotated_z1 = x_z1 * cos_theta_z - x_z2 * sin_theta_z
    x_rotated_z2 = x_z1 * sin_theta_z + x_z2 * cos_theta_z

    # 7. 合并旋转后的结果
    x_rotated = torch.cat([x_rotated_x1, x_rotated_x2, x_rotated_y1, x_rotated_y2, x_rotated_z1, x_rotated_z2], dim=-1)
    return x_rotated

# 示例参数
batch_size = 2
seq_len = 4
D = 24  # 嵌入维度,必须能被 6 整除

# 随机初始化嵌入向量
torch.manual_seed(42)
x = torch.randn(batch_size, seq_len, D)

# 生成位置张量,假设每个位置都有 (i, j, k) 坐标
positions = torch.randint(0, 10, (batch_size, seq_len, 3))

# 应用 3D RoPE 编码
x_rope = apply_3d_rope(x, positions)

# 输出结果
print("输入嵌入向量形状:", x.shape)
print("位置张量形状:", positions.shape)
print("经过 3D RoPE 编码后的嵌入向量形状:", x_rope.shape)

执行上述代码,将输出:

输入嵌入向量形状: torch.Size([2, 4, 24])
位置张量形状: torch.Size([2, 4, 3])
经过 3D RoPE 编码后的嵌入向量形状: torch.Size([2, 4, 24])

这表明输入的嵌入向量经过 3D RoPE 编码后,形状保持不变,可以继续用于后续的模型计算。


5. 3D RoPE 在应用中的优势

  • 捕获空间关系:3D RoPE 能够有效地捕获三维空间中数据的相对位置关系,增强模型对空间结构的理解。
  • 适用于三维数据:在处理点云、三维物体、空间序列等三维数据时,3D RoPE 提供了一种自然且有效的位置编码方法。
  • 兼容现有模型:3D RoPE 可以与 Transformer 等模型无缝结合,只需在输入嵌入向量时应用适当的旋转编码。

6. 应用场景

  • 点云处理:3D RoPE 可用于点云分类、分割和目标检测等任务,帮助模型理解点云中的三维结构。
  • 视频理解:在时空 Transformer 中,将时间和空间维度都考虑进去,3D RoPE 可以编码时空位置信息。
  • 医学影像:对于三维医学影像,如 MRI、CT 扫描等,3D RoPE 有助于模型捕获空间位置信息,提高诊断和分析的准确性。

7. 结论

3D RoPE 是对原始旋转位置编码的有益扩展,适用于需要建模三维位置信息的任务。通过对嵌入向量进行三维旋转变换,模型能够更好地理解三维空间中的数据分布和结构,提高在三维数据处理任务中的性能。


参考资料:

  • Su, J., et al. (2021). RoFormer: Enhanced Transformer with Rotary Position Embedding. arXiv preprint arXiv:2104.09864.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值