AutoGluon GPU 版本 安装配置教程

CSDN 叶庭云https://yetingyun.blog.csdn.net/


官方文档:https://auto.gluon.ai/stable/index.html

新建一个干净的虚拟环境,先装上 PyTorch:

conda create -n myenv python=3.8 cudatoolkit=11.0 -y
conda activate myenv

pip3 install "torch>=1.0,<1.11+cu110" -f https://download.pytorch.org/whl/cu110/torch_stable.html

查看 torch 是否成功安装,然后查看 GPU 是否可用:

pip3 install -U pip
pip3 install -U setuptools wheel

pip3 install autogluon -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

等待一会儿就装好了,结果如下。为了能够使用 GPU 加速(主要是 LightGBM 和 MXNet 要配置 GPU 版本):

# 默认安装可能会改变原有的PyTorch环境    重新安装一下
conda install pytorch==1.7.0 torchvision==0.8.1 cudatoolkit=11.0 -c pytorch

conda install pytorch==1.8.1 torchvision==0.9.1 cudatoolkit=11.1 -c pytorch
pip3 uninstall lightgbm -y   
pip3 install lightgbm --install-option=--gpu

git clone --recursive https://github.com/microsoft/LightGBM
cd LightGBM
mkdir build
cd build
cmake -DUSE_GPU=1 ..
# if you have installed NVIDIA CUDA to a customized location, you should specify paths to OpenCL headers and library like the following:
# cmake -DUSE_GPU=1 -DOpenCL_LIBRARY=/usr/local/cuda/lib64/libOpenCL.so -DOpenCL_INCLUDE_DIR=/usr/local/cuda/include/ ..
make -j$(nproc)
cd ..

sudo apt-get -y install python-pip
sudo -H pip install setuptools numpy scipy scikit-learn -U
cd python-package/
sudo python setup.py install --precompile
cd ..

pip install 'mxnet-cu110<2.0.0'
from autogluon.tabular import TabularDataset, TabularPredictor

train_data = TabularDataset('./customer/train.csv').drop(columns=["客户ID"])
test_data = TabularDataset('./customer/test.csv').drop(columns=["客户ID"])

metric = 'roc_auc'
excluded_model_types = ['KNN', 'XT']
predictor = TabularPredictor(label='是否流失',
                             eval_metric=metric).fit(train_data=train_data,
                                              		 excluded_model_types=excluded_model_types,
                                              		 time_limit=3600,
                                              		 ag_args_fit={'num_gpus': 1}
                                              	     )

predictions = predictor.predict_proba(test_data)
# 查看集成的单模型的表现  
predictor.leaderboard(test_data, silent=True)

predictor.feature_importance(train_data)            # 特征重要性

### GPU 使用方法及配置教程 #### Colab 配置与使用指南 对于希望利用GPU资源的研究人员和开发者来说,Google Colab是一个非常方便的选择。通过浏览器即可访问强大的计算能力而无需本地硬件支持。为了启用并验证Colab中的GPU设置,在创建新的Notebook之后应立即执行如下操作来确认GPU状态: ```python import tensorflow as tf print("TensorFlow version:", tf.__version__) device_name = tf.test.gpu_device_name() if device_name != '/device:GPU:0': raise SystemError('GPU device not found') print(f'Found GPU at: {device_name}') ``` 上述代码片段用于检测当前环境中是否存在可用的GPU设备[^1]。 #### Jupyter Notebook 的 GPU 支持 当在本地机器上运行Jupyter Notebook时,确保已正确安装CUDA工具包以及cuDNN库,并且Python环境中已经包含了能够调用这些库的相关框架(如PyTorch, TensorFlow)。接着可以在notebook单元格里编写简单的测试程序以检验GPU是否被识别和支持: ```python import torch print(torch.cuda.is_available()) print(torch.version.cuda) ``` 这段脚本会返回True表示有可用的NVIDIA GPU并且显示所使用的CUDA版本号。 #### AutoGluonGPU 设置 针对特定应用场景下的自动化建模平台AutoGluon而言,其官方文档提供了详细的指导说明如何在其基础上开启GPU加速功能。按照给定命令完成软件包更新后,可以通过下面的方式进一步检查torch模块及其对应的GPU兼容情况: ```bash pip3 install -U pip pip3 install -U setuptools wheel pip3 install autogluon -i http://pypi.douban.com/simple --trusted-host pypi.douban.com ``` 随后可以尝试加载模型或者训练数据集来看看是否有明显的性能提升迹象[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值