因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身。某天,他们在机房商量一个绝妙的计划"一卡通大冒险"。这个计划是由wf最先提出来的,计划的内容是,把自己的联系方式写在校园一卡通的背面,然后故意将自己的卡"遗失"在某处(如水房,TD,食堂,主M。。。。)他们希望能有MM看到他们遗失卡,能主动跟他们联系,这样就有机会请MM吃饭了。他们决定将自己的一卡通夹在基本相同的书里,然后再将书遗失到校园的各个角落。正当大家为这个绝妙的计划叫好时,大家想到一个问题。很明显,如果只有一张一卡通,那么只有一种方法,即,将其夹入一本书中。当有两张一卡通时,就有了两种选择,即,将两张一卡通夹在一本书里,或者分开夹在不同的书里。当有三张一卡通时,他们就有了5种选择,即:
{{A},{B},{C}} , {{A,B},{C}}, {{B,C},{A}}, {{A,C},{B}} ,{{A,B,C}} 于是,
这个邪恶计划的组织者wf希望了解,如果ACM训练对里有n位帅哥(即有N张一卡通),那么要把这些一卡通夹到书里有多少种不同的方法。
Input
包含多组数据,第一行为n,表示接下来有n组数据。以下每行一个数x,表示共有x张一卡通。(1≤x≤2000).
Output
对每组数据,输出一行:不同的方法数,因为这个数可能非常大,我们只需要它除以1000的余数。
Sample Input
4
1
2
3
100
Sample Output
1
2
5
751
- #include<stdio.h>
- int dp[2002][2002]; // dp[i][j] 表示i张卡片 分成j堆 的情况数
- int c[2002];
- int main ()
- {
- int i,j,n,b;
- for(i=1;i<=2000;i++)
- dp[i][i]=dp[i][1]=1;
- for(i=2;i<=2000;i++)
- for(j=2;j<=2000;j++)
- dp[i][j]=(dp[i-1][j-1]+dp[i-1][j]*j)%1000;
- /*
对于卡片 i ,要使他有 j 堆,那么只有两种选择. - 1. 选择原来 i-1 张卡片时就有 j 堆的,卡片 i 只能是放在任何一个堆里面, 就有dp[i-1][j]*j 种放法.
- 2. 或者自己独立成为一个堆,那么就只有在 i-1 张卡片,分成 j-1 堆的情况下,自己独自成为一个堆, 即有dp[j-1][i-1]种放法。
- */
- for(i=1;i<=2000;i++)
- for(j=1;j<=i;j++)
- c[i]+=dp[i][j];
- scanf("%d",&n);
- for(i=0;i<n;i++)
- {
- scanf("%d",&b);
- printf("%d\n",c[b]%1000);
- }
- return 0;
- }