二分图的最大匹配、完美匹配和匈牙利算法

二分图的最大匹配、完美匹配和匈牙利算法


这篇文章讲无权二分图的最大匹配和完美匹配,以及用于求解匹配的匈牙利算法(Hungarian Algorithm)。

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集  U   和  V  ,使得每一条边都分别连接 U  、  V   中的顶点。如果存在这样的划分,则此图为一个二分图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

Bipartite Graph(1)  Bipartite Graph(2)  Matching  Maximum Matching

我们定义匹配点匹配边未匹配点非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。

0

求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。

5交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

6

增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。


匈牙利算法思想:

根据一个匹配是最大匹配当且仅当没有增广路,求最大匹配就是找增广路,直到找不到增广路,就找到了最大匹配。遍历每个点,查找增广路,若找到增广路,则修改匹配集和匹配数,否则,终止算法,返回最大匹配数。

 

增广路径必须满足的性质:

1.有奇数条边。

2.起点在二分图的左半边,终点在右半边。

3.路径上的点一定是一个在左半边,一个在右半边,交替出现。(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连。)

4.整条路径上没有重复的点。

5.起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。

6.路径上的所有第奇数条边都不在原匹配中,所有第偶数条边都出现在原匹配中。

7.把增广路径上的所有第奇数条边加入到原匹配中去,并把增广路径中的所有第偶数条边从原匹配中删除(这个操作称为增广路径的取反),则新的匹配数就比原匹配数增加了1个(奇数=偶数+1)。


匈牙利算法步骤:

令G = (X,*,Y)是一个二分图,其中,X = {x1,x2,...xm}, Y = {y1,y2,...yn}。令M为G中的任一个匹配

 (1)置M为空

 (2)从G中找出一个未匹配点v(增广路性质5要求的),如果没有则算法结束,否则,以v为起点,查找增广路(邻接点是为未匹配点,则返回寻找完成,若v的邻接点u是匹配点,则从u开始查找,直至查找到有未匹配点终止)即满足增广路的性质,如果没有找到增广路,则算法终止

   (3)找出一条增广路径P,通过异或操作获得更大的匹配M’代替M(方便要输出增广矩阵以及进一步查找),匹配数加1(性质7得到)

 (4)重复(2)(3)操作直到找不出增广路径为止



匈牙利算法代码实现:

  1. #define maxn 10  //表示x集合和y集合中顶点的最大个数!  
  2.   int nx,ny;     //x集合和y集合中顶点的个数  
  3.   int edge[maxn][maxn];    //edge[i][j]为1表示i、j可以匹配  
  4.   int match[maxn];   //用来记录x集合中匹配的y元素是哪个  
  5.   int visited[maxn];       //用来记录该顶点是否被访问过!  
  6.   
  7.   int path(int u)  
  8.   {  
  9.       int v;  
  10.       for(v=1;v<=ny;v++)  
  11.       {  
  12.           if(edge[u][v]&&!visited[v])  
  13.           {  
  14.              visited[v]=1;  
  15.              if(match[v]==0 || path(match[v])) 
  16.                               //如果y集合中的v元素没有匹配 或者 是v已经匹配,又返回寻找。  
  17.               {  
  18.                   match[v]=u;   //找到增广路,修改匹配M  
  19.                   return 1;  
  20.               }  
  21.           }  
  22.       }  
  23.       return 0;  
  24.   }  
  25.   
  26.   int maxmatch()  
  27.   {  
  28.       int res=0;  
  29.       memset(match,0,sizeof(match));  //初始值为0,表示两个集合中都没有匹配的元素!    
  30.       for(int i=1;i<=nx;i++)  
  31.       {  
  32.            memset(visited,0,sizeof(visitited));  //重置标记为为访问  
  33.            if(path(i))   //以 i 为起点开始查找增广路,返回true ,匹配数+1
  34.              res++;    
  35.       }  
  36.       return res;  
  37.   }  


补充定义和定理:


最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。


定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数



  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值