HDU-1503 Advanced Fruits

原题链接

题目描述:题意:将两个字符串结合起来,他们的公共子序列只输出一次。

代码图解
这里写图片描述

由上图可写出代码

#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
char s1[1010],s2[1010];
int maxlen[1010][1010];
int node[1010][1010];
void print(int i,int j)
{
    if(i==0&&j==0)return;
    if(node[i][j]==0)
    {
        print(i-1,j-1);
        cout<<s1[i-1];
    }
    else if(node[i][j]==1)
    {
        print(i-1,j);
        cout<<s1[i-1];
    }
    else
    {
        print(i,j-1);
        cout<<s2[j-1];
    }
}
int main()
{
    while(cin>>s1>>s2)
    {
        int length1=strlen(s1);
        int length2=strlen(s2);
        memset(maxlen,0,sizeof(maxlen));
        for(int i=0;i<=length1;i++)node[i][0]=1;
        for(int i=0;i<=length2;i++)node[0][i]=-1;
        for(int i=1;i<=length1;i++)
        {
            for(int j=1;j<=length2;j++)
            {
                if(s1[i-1]==s2[j-1])
                {
                    maxlen[i][j]=maxlen[i-1][j-1]+1;
                    node[i][j]=0;
                }
                else if(maxlen[i-1][j]>maxlen[i][j-1])
                {
                    maxlen[i][j]=maxlen[i-1][j];
                    node[i][j]=1;
                }
                else
                {
                    maxlen[i][j]=maxlen[i][j-1];
                    node[i][j]=-1;
                }
            }
        }
        print(length1,length2);
        cout<<endl;
     /*
        for(int i=0;i<=length1;i++)
        {
            for(int j=0;j<=length2;j++)cout<<node[i][j]<<" ";
            cout<<endl;
        }
        for(int i=0;i<=length1;i++)
        {
            for(int j=0;j<=length2;j++)cout<<maxlen[i][j]<<" ";
            cout<<endl;
        }
    */
    ///输出两个数组可知其原理
        memset(s1,0,sizeof(s1));
        memset(s2,0,sizeof(s2));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值