TensorFlow基础例子

TensorFlow首先要定义各种结构,然后再处理运算
看下面的例子:

import tensorflow as tf
import numpy as np

#创建数据
x_data = np.random.rand(100).astype(np.float32) #随机生成100个类型为float32的数字
y_data = x_data*0.1 + 0.3  #期望输出,训练的权重和偏差会趋近于0.1和0.3

#初始化权重和偏差
weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) #随机生成一个在-1到1之间的权重,Variable是变量
biases = tf.Variable(tf.zeros([1])) #生成一个0变量
#定义输出
y = weights*x_data + biases
#损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5) #通过梯度下降训练,学习率为0.5
train = optimizer.minimize(loss) #训练的目的是最小化损失

#将所有变量初始化,这一步非常重要
init = tf.initialize_all_variables()

#以上只是建立了结构
#tf.Session()是控制的指令,只有.run()才会执行
sess = tf.Session()
sess.run(init) #执行初始化

for step in range(201): #进行200次循环
    sess.run(train)
    if step % 20 ==0:  #每20次打印一次结果
        print(step,sess.run(weights),sess.run(biases))

session是TensorFlow中的会话控制命令

import tensorflow as tf
#创建两个常数矩阵
matrix1 = tf.constant([[3,3]]) #1行2列
matrix2 = tf.constant([[2],
                       [2]])    #2行1列
product = tf.matmul(matrix1,matrix2)  #矩阵乘法

# #method 1
# sess = tf.Session()
# result = sess.run(product)
# print(result)
# sess.close()

# #method 2 执行
with tf.Session() as sess:
    result = sess.run(product)
    print(result)

在TensorFlow中定义了变量Variable,后面一定要定义init = tf.initialize_all_variables()

import tensorflow as tf

state = tf.Variable(0,name='counter') #定义state变量,名称为name
# print(state.name)
one = tf.constant(1)  #定义常量1

new_value = tf.add(state,one) #定义加法
update = tf.assign(state,new_value)  #定义替换

init = tf.initialize_all_variables() #very important

with tf.Session() as sess: #执行
    sess.run(init)
    for _ in range(3): 执行三次
        sess.run(new_value)
        print(sess.run(update))

Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 它和后面的和feed_dict是绑定的

import tensorflow as tf
#定义要输入的值的类型
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1,input2)

with tf.Session() as sess:
	#一定以feed_dict的形式喂入值
    print(sess.run(output,feed_dict={input1:[3.],input2:[4.]}))
### TensorFlow 基础代码实例 对于初学者来说,理解如何创建张量并执行基本操作是非常重要的。下面是一个简单的例子来展示这些概念。 #### 创建常量和变量 在 TensorFlow 中,可以使用 `tf.constant` 来定义不可变的数据结构——即常量;而通过 `tf.Variable` 可以声明可训练参数或模型权重等需要更新的数值[^3]: ```python import tensorflow as tf # 定义两个浮点型常数 a = tf.constant(2.0, dtype=tf.float32) b = tf.constant(3.0) # 执行加法运算并将结果存储在一个新的张量c中 c = a + b print(c.numpy()) # 输出:5.0 ``` #### 使用会话运行图计算 早期版本的 TensorFlow 需要显式启动 Session 对象来进行计算,在 TensorFlow 2.x 版本之后,默认启用了即时执行模式(Eager Execution),因此不再需要手动管理 Sessions。 不过为了兼容旧版程序以及更深入地了解底层机制,这里还是给出基于 session 的实现方式: ```python with tf.compat.v1.Session() as sess: output = sess.run([c]) print(output) # 输出:[5.0] ``` #### 构建简单线性回归模型 接下来构建一个非常基础的学习案例—单特征输入的一元线性回归问题。此部分展示了如何利用梯度下降算法最小化损失函数从而拟合给定数据集中的关系[^2]: ```python import numpy as np # 准备一些模拟数据 X_data = np.random.rand(100).astype(np.float32) Y_data = X_data * 0.1 + 0.3 # 初始化权重W与偏置B Weights = tf.Variable(tf.random.uniform([1], -1.0, 1.0)) Biases = tf.Variable(tf.zeros([1])) # 定义预测值y_pred 和真实标签 y_true之间的均方误差作为loss function y_pred = Weights * X_data + Biases loss = tf.reduce_mean(tf.square(y_pred - Y_data)) # 设置优化器及其学习率 optimizer = tf.optimizers.SGD(learning_rate=0.5) for step in range(201): optimizer.minimize(loss, var_list=[Weights, Biases]) if not (step % 20): print(f'Step {step}, Loss={loss.numpy()}, W={Weights.numpy()}, B={Biases.numpy()}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值