TensorFlow首先要定义各种结构,然后再处理运算
看下面的例子:
import tensorflow as tf
import numpy as np
#创建数据
x_data = np.random.rand(100).astype(np.float32) #随机生成100个类型为float32的数字
y_data = x_data*0.1 + 0.3 #期望输出,训练的权重和偏差会趋近于0.1和0.3
#初始化权重和偏差
weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) #随机生成一个在-1到1之间的权重,Variable是变量
biases = tf.Variable(tf.zeros([1])) #生成一个0变量
#定义输出
y = weights*x_data + biases
#损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5) #通过梯度下降训练,学习率为0.5
train = optimizer.minimize(loss) #训练的目的是最小化损失
#将所有变量初始化,这一步非常重要
init = tf.initialize_all_variables()
#以上只是建立了结构
#tf.Session()是控制的指令,只有.run()才会执行
sess = tf.Session()
sess.run(init) #执行初始化
for step in range(201): #进行200次循环
sess.run(train)
if step % 20 ==0: #每20次打印一次结果
print(step,sess.run(weights),sess.run(biases))
session是TensorFlow中的会话控制命令
import tensorflow as tf
#创建两个常数矩阵
matrix1 = tf.constant([[3,3]]) #1行2列
matrix2 = tf.constant([[2],
[2]]) #2行1列
product = tf.matmul(matrix1,matrix2) #矩阵乘法
# #method 1
# sess = tf.Session()
# result = sess.run(product)
# print(result)
# sess.close()
# #method 2 执行
with tf.Session() as sess:
result = sess.run(product)
print(result)
在TensorFlow中定义了变量Variable,后面一定要定义init = tf.initialize_all_variables()
import tensorflow as tf
state = tf.Variable(0,name='counter') #定义state变量,名称为name
# print(state.name)
one = tf.constant(1) #定义常量1
new_value = tf.add(state,one) #定义加法
update = tf.assign(state,new_value) #定义替换
init = tf.initialize_all_variables() #very important
with tf.Session() as sess: #执行
sess.run(init)
for _ in range(3): 执行三次
sess.run(new_value)
print(sess.run(update))
Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 它和后面的和feed_dict是绑定的
import tensorflow as tf
#定义要输入的值的类型
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1,input2)
with tf.Session() as sess:
#一定以feed_dict的形式喂入值
print(sess.run(output,feed_dict={input1:[3.],input2:[4.]}))