TensorFlow基础例子

TensorFlow首先要定义各种结构,然后再处理运算
看下面的例子:

import tensorflow as tf
import numpy as np

#创建数据
x_data = np.random.rand(100).astype(np.float32) #随机生成100个类型为float32的数字
y_data = x_data*0.1 + 0.3  #期望输出,训练的权重和偏差会趋近于0.1和0.3

#初始化权重和偏差
weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) #随机生成一个在-1到1之间的权重,Variable是变量
biases = tf.Variable(tf.zeros([1])) #生成一个0变量
#定义输出
y = weights*x_data + biases
#损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5) #通过梯度下降训练,学习率为0.5
train = optimizer.minimize(loss) #训练的目的是最小化损失

#将所有变量初始化,这一步非常重要
init = tf.initialize_all_variables()

#以上只是建立了结构
#tf.Session()是控制的指令,只有.run()才会执行
sess = tf.Session()
sess.run(init) #执行初始化

for step in range(201): #进行200次循环
    sess.run(train)
    if step % 20 ==0:  #每20次打印一次结果
        print(step,sess.run(weights),sess.run(biases))

session是TensorFlow中的会话控制命令

import tensorflow as tf
#创建两个常数矩阵
matrix1 = tf.constant([[3,3]]) #1行2列
matrix2 = tf.constant([[2],
                       [2]])    #2行1列
product = tf.matmul(matrix1,matrix2)  #矩阵乘法

# #method 1
# sess = tf.Session()
# result = sess.run(product)
# print(result)
# sess.close()

# #method 2 执行
with tf.Session() as sess:
    result = sess.run(product)
    print(result)

在TensorFlow中定义了变量Variable,后面一定要定义init = tf.initialize_all_variables()

import tensorflow as tf

state = tf.Variable(0,name='counter') #定义state变量,名称为name
# print(state.name)
one = tf.constant(1)  #定义常量1

new_value = tf.add(state,one) #定义加法
update = tf.assign(state,new_value)  #定义替换

init = tf.initialize_all_variables() #very important

with tf.Session() as sess: #执行
    sess.run(init)
    for _ in range(3): 执行三次
        sess.run(new_value)
        print(sess.run(update))

Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 它和后面的和feed_dict是绑定的

import tensorflow as tf
#定义要输入的值的类型
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1,input2)

with tf.Session() as sess:
	#一定以feed_dict的形式喂入值
    print(sess.run(output,feed_dict={input1:[3.],input2:[4.]}))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值