tensorflow之eval

本文解析了在TensorFlow中sess.run()与Tensor.eval()的差异,指出sess.run()可在同一步骤获取多个张量的值,而Tensor.eval()一次只能获取一个张量的值。通过示例代码展示了两者在执行效率上的区别。
摘要由CSDN通过智能技术生成

有了sess.run之后,为什么还需要eval呢,感觉两个效果是一样的。

参考下面博主:

https://blog.csdn.net/chengshuhao1991/article/details/78554743

简单点说就是:你可以使用sess.run()在同一步获取多个tensor中的值,使用Tensor.eval()时只能在同一步当中获取一个tensor值,并且每次使用 eval 和 run时,都会执行整个计算图。

上一个示例:

t = tf.constant(42.0)
u = tf.constant(37.0)
tu = tf.multiply(t, u)
ut = tf.multiply(u, t)
with tf.Session() as sess:
    print(tu.eval())  # runs one step
    print(ut.eval())  # runs one step
    print(sess.run([tu, ut]))  # evaluates both tensors in a single step

输出:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值