【目标检测】Object Detection Fast RCNN 算法解析

Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf


继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码

同样使用最大规模的网络,Fast RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间.

思想

基础:RCNN

简单来说,RCNN使用以下四步实现目标检测: 
a. 在图像中确定约1000-2000个候选框 
b. 对于每个候选框内图像块,使用深度网络提取特征 
c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
d. 对于属于某一特征的候选框,用回归器进一步调整其位置 

更多细节可以参看RCNN算法解析

改进:Fast RCNN

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢 
RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。 
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢 
原因同上。 在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大 
RCNN中独立的分类器和回归器需要大量特征作为训练样本。 
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

以下按次序介绍三个问题对应的解决方法。

特征提取网络

基本结构

图像归一化为224×224直接送入网络。

前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域(图像序号×1+几何位置×4,序号用于训练)。 


注:文中给出了大中小三种网络,此处示出最大的一种。三种网络基本结构相似,仅conv+relu层数有差别,或者增删了norm层。


roi_pool层的测试(forward)

roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层。 


roi_pool层的训练(backward)

首先考虑普通max pooling层。设 xi 为输入层的节点, yj 为输出层的节点。 

Lxi={0Lyjδ(i,j)=falseδ(i,j)=true

其中判决函数 δ(i,j) 表示i节点是否被j节点选为最大值输出。不被选中有两种可能: xi 不在 yj 范围内,或者 xi 不是最大值。

对于roi max pooling,一个输入节点可能和多个输出节点相连。设 xi 为输入层的节点, yrj 为第 r 个候选区域的第 j 个输出节点。


判决函数 δ(i,r,j) 表示i节点是否被候选区域r的第j个节点选为最大值输出。代价对于 xi 的梯度等于所有相关的后一层梯度之和。

网络参数训练

参数初始化

网络除去末尾部分如下图,在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。 


其余参数随机初始化。

分层数据

在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。 
实际选择N=2, R=128。

训练数据构成

N张完整图片以50%概率水平翻转。 
R个候选框的构成方式如下:


分类与位置调整

数据结构

第五阶段的特征输入到两个并行的全连层中(称为multi-task)。 


cls_score层用于分类,输出K+1维数组 p ,表示属于K类和背景的概率。 
bbox_prdict层用于调整候选区域位置,输出4*K维数组 t ,表示分别属于K类时,应该平移缩放的参数。

代价函数

loss_cls层评估分类代价。由真实分类 u 对应的概率决定: 

Lcls=logpu

loss_bbox评估检测框定位代价。比较真实分类对应的预测参数 tu 和真实平移缩放参数为 v 的差别: 

Lloc=Σ4i=1g(tuivi)

g为Smooth L1误差,对outlier不敏感: 
g(x)={0.5x2|x|0.5|x|<1otherwise

总代价为两者加权和,如果分类为背景则不考虑定位代价: 

L={Lcls+λLlocLclsuu

源码中bbox_loss_weights用于标记每一个bbox是否属于某一个类

全连接层提速

分类和位置调整都是通过全连接层(fc)实现的,设前一级数据为 x 后一级为 y ,全连接层参数为 W ,尺寸 u×v 。一次前向传播(forward)即为: 

y=Wx
计算复杂度为 u×v

W 进行SVD分解,并用前t个特征值近似: 

W=UΣVTU(:,1:t)Σ(1:t,1:t)V(:,1:t)T

原来的前向传播分解成两步: 

y=Wx=U(ΣVT)x=Uz
计算复杂度变为 u×t+v×t 。 
在实现时,相当于把一个全连接层拆分成两个,中间以一个低维数据相连。 

在github的源码中,这部分似乎没有实现。

实验与结论

实验过程不再详述,只记录结论 
- 网络末端同步训练的分类和位置调整,提升准确度 
- 使用多尺度的图像金字塔,性能几乎没有提高 
倍增训练数据,能够有2%-3%的准确度提升 
- 网络直接输出各类概率(softmax),比SVM分类器性能略好 
更多候选窗不能提升性能

同年作者团队又推出了Faster RCNN,进一步把检测速度提高到准实时,可以参看。 
关于RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法,可以进一步参考作者在15年ICCV上的讲座Training R-CNNs of various velocities


  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Moving object detection(移动物体检测)是计算机视觉领域的一个重要研究方向,该算法的目标是从视频序列中准确地检测出移动的物体并进行跟踪。移动物体检测可以应用于许多领域,如视频监控、交通管理和智能车辆等。 常见的Moving object detection算法可以分为基于背景差分法、光流法和基于深度学习的方法。 基于背景差分法的Moving object detection算法主要通过将当前帧与之前的背景帧进行差分来检测移动物体。首先,通过建立背景模型,提取出背景帧;然后,将当前帧与背景帧进行差分,得到移动物体的二值化图像。最后,通过对二值化图像进行形态学操作和连通区域分析,可以去除噪声并提取出移动物体。 光流法的Moving object detection算法是基于物体在连续帧中的像素灰度值变化来检测移动物体的。该方法通过计算物体像素之间的光流向量来推断像素的运动方向和速度,从而检测出移动物体。 基于深度学习的Moving object detection算法近年来逐渐受到关注,利用深度神经网络进行移动物体检测。这些算法通常采用卷积神经网络(CNN)或循环神经网络(RNN)来提取图像特征,并通过分类器来判断物体是否在移动。 总的来说,Moving object detection算法是通过对视频序列进行分析和处理,利用图像处理、计算机视觉和深度学习等技术来检测出移动物体。不同的算法有不同的优缺点和适用场景,研究者们正在不断改进和发展这些算法,以提高移动物体检测的准确性和实时性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值