数值分析中的正交函数与矩阵分解及特殊函数
在数值分析领域,正交函数和矩阵分解是非常重要的概念,同时一些特殊函数如贝塞尔函数、勒让德函数等也有着广泛的应用。下面我们将详细介绍这些内容。
1. 正交函数与矩阵分解相关练习及解答
1.1 曲线正交性证明
要证明曲线 $x^2 + 3y^2 = k_1$ 和 $3y = k_2x^3$ 相互正交。
- 对 $x^2 + 3y^2 = k_1$ 进行隐式求导:
- 得到 $2x + 6y\frac{dy}{dx} = 0$,进一步得出 $\frac{dy}{dx}=-\frac{1}{3}\cdot\frac{x}{y}$。
- 对 $3y = k_2x^3$ 求导:
- 可得 $\frac{dy}{dx}=k_2x^2$,又因为 $k_2 = \frac{3y}{x^3}$,代入后得到 $\frac{dy}{dx}=\frac{3y}{x}$。
- 可以发现这两个导数互为负倒数,所以这两条曲线相互正交。
1.2 求曲线族的正交轨迹
对于曲线族 $2x^2 + y^2 = kx$:
- 隐式求导:$4x + 2y\frac{dy}{dx} = k$,解出 $\frac{dy}{dx}=\frac{k - 4x}{2y}$。
- 由 $2x^2 + y^2 = kx$ 可得 $k=\frac{2x^2 + y^2}{x}$,代入上式得到 $\frac{dy}{dx}=\frac{2x^2 - y^2}{2xy}$。
- 要求正交轨迹,其斜率为原曲线斜率的负倒数,即 $\frac{dy}{dx}=\frac{2xy}{
超级会员免费看
订阅专栏 解锁全文

2414

被折叠的 条评论
为什么被折叠?



