考研数学——高数:函数与极限(2)

本文详细介绍了考研数学中高数部分的无穷小和无穷大的概念,包括它们的几何意义、无穷小与无穷大的关系、极限的运算法则以及极限存在法则。文中还探讨了夹逼准则、单调有界准则等重要定理,并举例说明如何应用这些理论解决实际问题。此外,文章还涉及无穷小的比较和等价无穷小的应用。
摘要由CSDN通过智能技术生成

无穷小

无穷大

无穷大的几何意义

无穷大与无穷小的关系

极限的运算法则

定理1

定理2

定理3

极限存在法则

①夹逼准则

重要极限1

②单调有界准则

重要极限2    

无穷小的比较

高阶无穷小

重要等价无穷小总结

等价无穷小的使用情况


无穷小

当x->x0(x->∞)时,f(x)极限为0,则称f(x)为x->x0(x->∞)时的无穷小量

注意:

  • 无穷小是变量,不能与很小的数混淆
  • 零唯一是可以作为无穷小的数
  • 极限与无穷小量的关系:一个函数在某点极限为A,等价于它在该点的极限为无穷小量加A

无穷大

给定一个M>0,总存在δ>0,当0<|x-x0|<δ时,恒有|f(x)|>M

  • 如果是负无穷大,则是f(x)<-M
  • 如果是正无穷大,则是f(x)>M

无穷大的几何意义

  • 如果f(x)在x->x0处极限为∞,则x=x0为它的垂直渐近线
  • 如果f(x)在x->x0处极限为A,则y=A为它的水平渐近线

无穷大与无穷小的关系

在同一极限过程(针对同一函数来说):

如果f(x)无穷大,则1/f(x)是无穷小

反之如果f(x)无穷小,且f(x)≠0,则1/f(x)是无穷大


极限的运算法则

定理1

两个无穷小的和是无穷小

推广:有限个无穷小的和是无穷小(但不能推广到无穷多个,如\lim_{n->oo}\sum_{1}^{n}t/{n_{}}^{2}

定理2

有界函数与无穷小的乘积是无穷小

推广:有限个无穷小的乘积是无穷小

定理3

如果拆分后的每个部分极限都存在,则对于复合运算的极限可以拆分为各自的极限的加减乘除

(拆分为除法时,分母的极限不能为0

  • 极限存在 ± 极限不存在 = 极限<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值