无穷小
当x->x0(x->∞)时,f(x)极限为0,则称f(x)为x->x0(x->∞)时的无穷小量
注意:
- 无穷小是变量,不能与很小的数混淆
- 零唯一是可以作为无穷小的数
- 极限与无穷小量的关系:一个函数在某点极限为A,等价于它在该点的极限为无穷小量加A
无穷大
给定一个M>0,总存在δ>0,当0<|x-x0|<δ时,恒有|f(x)|>M
- 如果是负无穷大,则是f(x)<-M
- 如果是正无穷大,则是f(x)>M
无穷大的几何意义
- 如果f(x)在x->x0处极限为∞,则x=x0为它的垂直渐近线
- 如果f(x)在x->x0处极限为A,则y=A为它的水平渐近线
无穷大与无穷小的关系
在同一极限过程(针对同一函数来说):
如果f(x)无穷大,则1/f(x)是无穷小
反之如果f(x)无穷小,且f(x)≠0,则1/f(x)是无穷大
极限的运算法则
定理1
两个无穷小的和是无穷小
推广:有限个无穷小的和是无穷小(但不能推广到无穷多个,如)
定理2
有界函数与无穷小的乘积是无穷小
推广:有限个无穷小的乘积是无穷小
定理3
如果拆分后的每个部分极限都存在,则对于复合运算的极限可以拆分为各自的极限的加减乘除
(拆分为除法时,分母的极限不能为0)
- 极限存在 ± 极限不存在 = 极限<