函数、极限、连续

函数、极限、连续

函数

函数的概念

函数的定义

x x x y y y是两个变量, D D D是一个非空集合,如果对于每个 x ∈ D x\in D xD,都有一个 y = f ( x ) y=f(x) y=f(x)与之对应,那么 y y y称为 x x x的函数。其中定义域记为 D f = D D_f=D Df=D,值域记为 R f R_f Rf或者 f ( D ) f(D) f(D),有 R f = f ( D ) = { y ∣ y = f ( x ) , x ∈ D } R_f=f(D)=\{y|y=f(x), x\in D\} Rf=f(D)={yy=f(x),xD}

  • 当两个函数的定义域和对应关系 f f f均相等时,这两个函数是同一函数
复合函数的定义

设函数 y = f ( u ) y=f(u) y=f(u)的定义域为 D f D_f Df,函数 u = g ( x ) u=g(x) u=g(x)的定义域为 D g D_g Dg,值域为 R g R_g Rg,如果 D f ∩ R g = ∅ D_f\cap R_g=\emptyset DfRg=,则称函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]为函数 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)的复合函数,定义域为 { x ∣ x ∈ D g , g ( x ) ∈ D f } \{x|x\in D_g, g(x)\in D_f\} {xxDg,g(x)Df}

  • 注意,这里要求 D f ∩ R g = ∅ D_f\cap R_g=\emptyset DfRg=,而非 R g ⊆ D f R_g\subseteq D_f RgDf,可能是由于如果按后者来定义,无法很好的复合类似 u = x , y = ln ⁡ u u=x, y=\ln u u=x,y=lnu,这种情况的符合函数,如果按后者定义,则必须先确定 u = x u=x u=x的定义域,按前者定义则不用。也就是说,一个是先确定定义域后复合,一个是先复合后确定定义域。
  • 并非任意两个函数都能复合
反函数

设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,值域为 R y R_y Ry,如果对于任意 y ∈ R y y\in R_y yRy,有唯一确定的 x ∈ D x\in D xD,使得 y = f ( x ) y=f(x) y=f(x),则将 y = f ( x ) y=f(x) y=f(x)的反函数记为 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)

  • 并非所有函数都有反函数
  • 单调函数必有反函数
初等函数
  • 基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数
  • 由常数和基本初等函数,经过有限次四则运算和有限次的函数复合所构成的,并且可用一个式子表示的函数,称为初等函数
隐函数

假设由关系式 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0,若 ∀ x ∈ D \forall x\in D xD,存在唯一确定的 y y y满足 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0,由此确定的函数关系 y = f ( x ) y=f(x) y=f(x)称为由 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0确定的隐函数

函数的性质

单调性

设函数 y = f ( x ) y=f(x) y=f(x)在某区间 I I I上有定义,如果对于区间 I I I上任意两点 x 1 < x 2 x_1<x_2 x1<x2恒有 f ( x 1 ) < f ( x 2 ) f(x_1)<f(x_2) f(x1)<f(x2)( f ( x 1 ) > f ( x 2 ) f(x_1)>f(x_2) f(x1)>f(x2)),则称 y = f ( x ) y=f(x) y=f(x)在该区间内单调增加(或单调减少)

奇偶性

若函数 y = f ( x ) y=f(x) y=f(x)的定义域 D D D关于原点对称,有

  • 偶函数: f ( x ) = f ( − x ) f(x) = f(-x) f(x)=f(x)
  • 奇函数: f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x)
周期性

若存在实数 T > 0 T>0 T>0,对于任意 x x x,恒有 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x),则称 y = f ( x ) y=f(x) y=f(x)为以 T T T为周期的周期函数。

有界性

y = f ( x ) y=f(x) y=f(x)在集合 X X X上有定义,若存在 M > 0 M>0 M>0,使得对任意 x ∈ X x\in X xX,恒有
∣ f ( x ) ∣ ≤ M |f(x)| \leq M f(x)M
则称 f ( x ) f(x) f(x) X X X上为有界函数,否则 f ( X ) f(X) f(X) X X X上为无界函数

极限

极限的概念

数列的极限

如果对于任意的 ϵ > 0 \epsilon >0 ϵ>0,总存在正整数 N N N,当 n > N n>N n>N时,恒有
∣ x n − a ∣ < ϵ |x_n-a|<\epsilon xna<ϵ
成立,则常数 a a a为数列 { x n } \{x_n\} {xn} n n n趋于无穷时的极限,记为 lim ⁡ n → ∞ x n = a \lim_{n\rightarrow \infty} x_n=a limnxn=a

  • 若数列 { x n } \{x_n\} {xn}收敛于 a a a,则其任一子数列也收敛于 a a a
  • lim ⁡ n → ∞ x n = a ⇔ lim ⁡ n → ∞ x 2 n − 1 = lim ⁡ n → ∞ x 2 n = a \lim_{n\rightarrow \infty} x_n=a \Leftrightarrow \lim_{n\rightarrow \infty} x_{2n-1} = \lim_{n\rightarrow \infty} x_{2n} = a limnxn=alimnx2n1=limnx2n=a
函数的极限

若对任意给定的 ϵ > 0 \epsilon>0 ϵ>0,总存在 X > 0 X>0 X>0,当 x > X x>X x>X( x < − X x<-X x<X ∣ x ∣ > X |x|>X x>X)时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ,则称 A A A f ( x ) f(x) f(x) x → + ∞ x\rightarrow +\infty x+( x → − ∞ x\rightarrow -\infty x x → ∞ x\rightarrow \infty x)时的极限,记为 lim ⁡ x → + ∞ f ( x ) = A \lim_{x\rightarrow +\infty}f(x) = A limx+f(x)=A( lim ⁡ x → − ∞ f ( x ) = A \lim_{x\rightarrow -\infty}f(x) = A limxf(x)=A, lim ⁡ x → ∞ f ( x ) = A \lim_{x\rightarrow \infty}f(x) = A limxf(x)=A)

  • lim ⁡ x → ∞ f ( x ) = A ⇔ lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → − ∞ f ( x ) = A \lim_{x\rightarrow \infty}f(x) = A \Leftrightarrow \lim_{x\rightarrow +\infty}f(x) =\lim_{x\rightarrow -\infty}f(x) = A limxf(x)=Alimx+f(x)=limxf(x)=A
自变量趋于有限值时函数的极限

若对任意 ϵ > 0 \epsilon>0 ϵ>0,总存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ,则称 A A A f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的极限,记为 lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limxx0f(x)=A

  • lim ⁡ x → x 0 f ( x ) = A ⇔ lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) = A \lim_{x\rightarrow x_0}f(x) = A \Leftrightarrow \lim_{x\rightarrow x_0^+}f(x) = \lim_{x\rightarrow x_0^-}f(x) = A limxx0f(x)=Alimxx0+f(x)=limxx0f(x)=A

极限的性质

有界性
  • 数列:如果数列 { x n } \{x_n\} {xn}收敛,那么数列 { x n } \{x_n\} {xn}一定有界
  • 函数:如果 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x)存在,则 f ( x ) f(x) f(x) x 0 x_0 x0某去心邻域有界
保号性
  • 数列:若 lim ⁡ n → ∞ x n = A \lim_{n\rightarrow \infty} x_n = A limnxn=A
    1. 如果 A > 0 A>0 A>0( A < 0 A<0 A<0),则存在 N > 0 N>0 N>0,当 n > N n>N n>N时, x n > 0 x_n>0 xn>0( x n < 0 x_n<0 xn<0)
    2. 如果存在 N > 0 N>0 N>0,当 n > N n>N n>N时, x n ≥ 0 x_n\geq 0 xn0( x n ≤ 0 x_n\leq 0 xn0),则 A ≥ 0 A\geq 0 A0( A ≤ 0 A\leq 0 A0)
    3. 当上一条结论中,前提改为 x n > 0 x_n>0 xn>0( x n < 0 x_n<0 xn<0),结论不变
  • 函数:若 lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x) = A limxx0f(x)=A
    1. 如果 A > 0 A>0 A>0( A < 0 A<0 A<0),则存在 δ > 0 \delta>0 δ>0,当 x ∈ U ∘ ( x 0 , δ ) x\in \overset{\circ}{U}(x_0, \delta) xU(x0,δ)时, f ( x ) > 0 f(x)>0 f(x)>0(f(x)<0)
    2. 如果存在 δ > 0 \delta>0 δ>0,当 x ∈ U ∘ ( x 0 , δ ) x\in\overset{\circ}{U}(x_0, \delta) xU(x0,δ)时, f ( x ) ≥ 0 f(x)\geq 0 f(x)0( f ( x ) ≤ 0 f(x)\leq 0 f(x)0),那么 A ≥ 0 A\geq 0 A0( A ≤ 0 A\leq 0 A0)
    3. 当上一条结论中,前提改为 f ( x ) > 0 f(x)>0 f(x)>0( f ( x ) < 0 f(x)<0 f(x)<0),结论不变。始终意识到,极限描述的是 x 0 x_0 x0的去心邻域,跟 x 0 x_0 x0没关系

函数极限与数列极限的关系

lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0}f(x) = A limxx0f(x)=A,则对任意数列 { x n } \{x_n\} {xn} lim ⁡ n → ∞ x n = x 0 \lim_{n\rightarrow \infty} x_n=x_0 limnxn=x0,且 x n ≠ x 0 x_n\neq x_0 xn=x0,都有 lim ⁡ n → ∞ f ( x n ) = A \lim_{n\rightarrow \infty}f(x_n)=A limnf(xn)=A

  • 注意 x n ≠ x 0 x_n\neq x_0 xn=x0,这个条件很重要,进一步说明了,函数极限跟 x 0 x_0 x0没关系

无穷小量

无穷小量的概念

若函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0( x → ∞ x\rightarrow \infty x)时的极限为零,则称 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0( x → ∞ x\rightarrow \infty x)时的无穷小量。

  • 0 0 0为极限的变量,称为无穷小量
  • 提到无穷小量,必定指明极限过程
无穷小的性质
  1. 有限个无穷小的和仍是无穷小
  2. 有限个无穷小的积仍是无穷小
  3. 无穷小量和有界量的积是无穷小
无穷小的比较

α , β \alpha, \beta α,β是在同一极限过程中的无穷小, α ≠ 0 \alpha\neq 0 α=0

  1. lim ⁡ β α = 0 \lim \frac{\beta}{\alpha}=0 limαβ=0,则称 β \beta β是比 α \alpha α高阶的无穷小,记为 β = o ( α ) \beta = o(\alpha) β=o(α)
  2. lim ⁡ β α = ∞ \lim \frac{\beta}{\alpha}=\infty limαβ=,则称 β \beta β是比 α \alpha α低阶的无穷小
  3. lim ⁡ β α = c ≠ 0 \lim \frac{\beta}{\alpha}=c\neq 0 limαβ=c=0,则称 β \beta β α \alpha α的同阶无穷小
  4. lim ⁡ β α = 1 \lim \frac{\beta}{\alpha}=1 limαβ=1,则称 β \beta β α \alpha α是等价无穷小,记为 α ∼ β \alpha \sim \beta αβ
  5. lim ⁡ β α k = c ≠ 0 \lim \frac{\beta}{\alpha^k}=c\neq 0 limαkβ=c=0,则称 β \beta β α \alpha α k k k阶无穷小
极限值与无穷小之间的关系

lim ⁡ f ( x ) = A ⇔ f ( x ) = A + α ( x ) \lim f(x)=A \Leftrightarrow f(x)=A+\alpha(x) limf(x)=Af(x)=A+α(x)
其中 lim ⁡ α ( x ) = 0 \lim\alpha(x)=0 limα(x)=0

无穷大量

无穷大量的概念

若函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0( x → ∞ x\rightarrow \infty x)时趋于无穷,则称 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0( x → ∞ x\rightarrow\infty x)s时的无穷大量

无穷大量的性质
  1. 两个无穷大量的积仍为无穷大量
  2. 无穷大量与有界变量之和仍为无穷大量
  3. 无穷大量与非零常数乘积仍为无穷大量

两个重要极限

  1. lim ⁡ sin ⁡ α α = 1 \lim \frac{\sin \alpha}{\alpha} = 1 limαsinα=1,其中 α \alpha α为无穷小量
  2. lim ⁡ ( 1 + α ) 1 α = e \lim (1+\alpha)^{\frac{1}{\alpha}} = e lim(1+α)α1=e,其中 α \alpha α为无穷小量

洛必达法则

若有

  1. lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = 0 \lim_{x\rightarrow x_0} f(x)=\lim_{x\rightarrow x_0} g(x) = 0 limxx0f(x)=limxx0g(x)=0(或 ∞ \infty )
  2. f ( x ) f(x) f(x) g ( x ) g(x) g(x) x 0 x_0 x0的某去心邻域内可导,且 g ′ ( x ) ≠ 0 g'(x)\neq 0 g(x)=0
  3. lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x\rightarrow x_0}\frac{f'(x)}{g'(x)} limxx0g(x)f(x)存在(或为 ∞ \infty

则有 lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x\rightarrow x_0}\frac{f(x)}{g(x)} = \lim_{x\rightarrow x_0}\frac{f'(x)}{g'(x)} limxx0g(x)f(x)=limxx0g(x)f(x)

函数的连续性

连续性的定义

  1. y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某邻域内有定义,若
    lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim_{\Delta x\rightarrow 0}\Delta y = \lim_{\Delta x\rightarrow 0}[f(x_0+\Delta x)-f(x_0)] = 0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0
    则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续,并称 x 0 x_0 x0 f ( x ) f(x) f(x)的连续点
  2. y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0的某邻域内有定义,若 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0} f(x)=f(x_0) limxx0f(x)=f(x0),则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续, x 0 x_0 x0 f ( x ) f(x) f(x)的连续点
  • 左连续:若 lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0^-} f(x)=f(x_0) limxx0f(x)=f(x0),则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处左连续
  • 右连续:若 lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0^+} f(x)=f(x_0) limxx0+f(x)=f(x0),则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处右连续
  • 如果 f ( x ) f(x) f(x)在区间 ( a , b ) (a, b) (a,b)内每个点都连续,则称 f ( x ) f(x) f(x) ( a , b ) (a, b) (a,b)内连续
  • 如果 f ( x ) f(x) f(x)在区间 ( a , b ) (a, b) (a,b)内连续,且在 x = a x=a x=a处右连续,在 x = b x=b x=b处左连续,则称 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续

复合函数的连续性

如果函数 u = ϕ ( x ) u=\phi(x) u=ϕ(x)在点 x = x 0 x=x_0 x=x0处连续, ϕ ( x 0 ) = u 0 \phi(x_0)=u_0 ϕ(x0)=u0,而函数 y = f ( u ) y=f(u) y=f(u)在点 u = u 0 u=u_0 u=u0处连续,则复合函数 y = f [ ϕ ( x ) ] y=f[\phi(x)] y=f[ϕ(x)] x = x 0 x=x_0 x=x0处连续

  • 只要 lim ⁡ x → x 0 ϕ ( x ) = u 0 \lim_{x\rightarrow x_0} \phi(x)=u_0 limxx0ϕ(x)=u0,而 f ( u ) f(u) f(u) u 0 u_0 u0点连续,则
    lim ⁡ x → x 0 f [ ϕ ( x ) ] = f [ lim ⁡ x → x 0 ϕ ( x ) ] = f ( u 0 ) \lim_{x\rightarrow x_0} f[\phi(x)] = f[\lim_{x\rightarrow x_0} \phi(x)] = f(u_0) xx0limf[ϕ(x)]=f[xx0limϕ(x)]=f(u0)
    即当 f ( u ) f(u) f(u)连续时,函数符号 f f f和极限符号和变换顺序

间断点分类

  • 第一类间断点: lim ⁡ x → x 0 − f ( x ) \lim_{x\rightarrow x_0^-} f(x) limxx0f(x) lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x_0^+} f(x) limxx0+f(x)都存在
    • 可去间断点: lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) ≠ f ( x 0 ) \lim_{x\rightarrow x_0^-} f(x) = \lim_{x\rightarrow x_0^+} f(x) \neq f(x_0) limxx0f(x)=limxx0+f(x)=f(x0),或者 f ( x 0 ) f(x_0) f(x0)无定义
    • 跳跃间断点: lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x_0^-} f(x) \neq \lim_{x\rightarrow x_0^+} f(x) limxx0f(x)=limxx0+f(x)
  • 第二类间断点: lim ⁡ x → x 0 − f ( x ) \lim_{x\rightarrow x_0^-} f(x) limxx0f(x) lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x_0^+} f(x) limxx0+f(x)至少有一个不存在
    • 无穷型间断点: lim ⁡ x → x 0 − f ( x ) = ∞ \lim_{x\rightarrow x_0^-} f(x)=\infty limxx0f(x)=或者 lim ⁡ x → x 0 + f ( x ) = ∞ \lim_{x\rightarrow x_0^+} f(x)=\infty limxx0+f(x)=
    • 震荡型间断点: lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0} f(x) limxx0f(x)震荡

闭区间上连续函数的性质

最值定理

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上必有最大值与最小值

有界性定理

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上必有界

介值定理

f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可取到介于最小值 m m m和最大值 M M M之间的任何值

零点定理

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,且 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0,则至少存在一点 ξ ∈ ( a , b ) \xi\in(a, b) ξ(a,b),使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值