【AI大模型】用 MCP 让大模型自动批量下载文献,太香了!

前言

MCP 最近这么火,你还不知道它是啥吗?别慌,动手实战一番就包你明白了。

而且,咱这个是真的实战,绝对干货啊,全网少见的干货。

我们之前讲了很多建立知识库之类的,新鲜的知识才有意思嘛。问题是新鲜货哪里来呢,徒手去搜索加下载?2025 年了,咱不能这么干了。

你有没有想过让大模型自动给我们搜索、下载、解读文献,一条龙服务?即便像 Deep Research 之类的服务也主要是帮你搜索和整合资源,但不给你下载资源对不。

实际上,是可以手撸一个智能体帮我们干这项大工程的。只是现在不是流行 MCP 嘛,咱们也想通过这种方式来建一个。

马上给你安排上。

本篇将以 arxiv 为例,目标是让你发个话,智能体就帮你搜索、下载文献,甚至解读一条龙到家。

为了照顾不同需求,咱这里贴心地实现了两套方案,

  • Trae CN + Cline,功能强大
  • Cherry Studio,容易上手

当然,如果你喜欢的话,也不拦着你直接用 Python 开干。

1、MCP

这个概念最近很热,相信大家都见过。这里简要地作个解释,毕竟本篇的主旨是在于动手实践。

你别看网文一篇一篇,不如跟着本篇撸一撸,你就真刀真枪见识过了。

当然,概念了解下还是有必要的。先看一个图,心急的话也可以跳过此图看下面的大白话。

图片

MCP 作为「模型上下文协议」,可以看成专门为 AI 模型设计生态系统服务,它通过一个标准化的协议来管理和交换 AI 模型所需的各种信息,从而实现与各种外部服务和数据源的无缝集成。

用大白话来说,MCP 就像是 AI 模型(比如 DeepSeek、Gemini 等)的「超级翻译官」和「万能助手」。

我们不妨想象一下,AI 模型是个很厉害的专家,但是它自己只会说一种「AI 语言」。它需要跟各种网站、数据库、工具等外部世界打交道才能完成任务。

  • 翻译官: 这些「外部世界」说的都是不同的「外语」,即各种不同的数据格式和通信方式。MCP 就负责把 AI 模型说的话翻译成这些外语,也把这些外语翻译成 AI 模型能听懂的话。这样,AI 模型就不用学那么多外语了,只需要跟 MCP 说就行。
  • 万能助手: AI 模型有时候需要很多信息才能做好一件事,就像做菜需要菜谱、食材、调料一样。MCP 就负责把 AI 模型需要的所有信息(比如要查的资料、要用的工具、之前的聊天记录等等)都准备好,打包成一个大礼包(上下文),交给 AI 模型。这样,AI 模型就能直接开始工作。

举个例子:

你问 DeepSeek:杭州今天天气怎么样?

DeepSeek 自己没这项功能啊,咋办?它通过 MCP 获知提供这项功能的服务,然后使唤它查询外部天气预报网站,得知今天杭州的天气情况,再将数据整理好,最后给你答案:杭州今天晴,最高 27 度。

所以,MCP 的好处是:

  • 简单: AI 模型不用学那么多外语,不用操心那么多杂事,只需要跟 MCP 打交道。
  • 方便: 要加新的功能,比如查天气、订机票、下载文献等,只需要让 MCP 学会跟新的外部世界打交道就行,不用改 AI 模型本身。
  • 整洁: MCP 把所有乱七八糟的信息都整理好,AI 模型用起来更顺手。

总之,MCP 就是一个让 AI 模型更方便、更强大、更容易跟各种服务和数据打交道的「中间人」。

这时候可以品一下这个图,

图片

2、安装服务

回到主题,我们的目标是自动给咱从 arxiv 上下载文献,那就先搜一下提供这个功能的 MCP 服务器。

找到两个,一个如下图所示,但感觉它主要是搜索,貌似不提供下载业务。

图片

另一个见下图,看起来它是能够下载文献的。这下省事了,必须给一个大赞。

图片

本人用的是 mac,下面的安装流程也是针对它而言。因为手头没有 Windows 电脑,稍微有点差异吧,但问题应该不大,稍微捣鼓一下肯定没问题。

  • 安装第一个比较方便,用命令 pip install mcp-simple-arxiv 即可;
  • brew install uv 先安装 uv,然后用命令 uv tool install arxiv-mcp-server 安装第二个。

顺利的话,很快就搞定啦。主要一点,你安装过 Python,就方便了。

图片

然后就是在 Cline 里配置,可以用 VS Code 或者 Cursor、Windsurf 之类的。

此处我们用国货 Trae 的国内版,安装插件 Cline 咱就略过了,直接打开 Cline,点击 MCP 服务器。

图片

然后,点击左侧底部的 Configure MCP Servers,像右侧那样填写,然后看到灯绿就算配置好了。

图片

这样子就算配置好两个 MCP 服务了,然后就等着给大模型发号施令:搜索、解读、下载等任务。搜索和下载不是大模型自己的本事,需要外挂。

在 Cline 中提供了两种与大模型的交互模式,计划模式(Plan)和执行模式(Act),分别负责智能规划任务和高效执行任务。

3、设置大模型

别忘了在 Cline 里选择大模型!注意,这里需要大模型的 API Key。你可以让 plan 和 act 使用同一个模型,或者让它们分别使用不同模型。比如一个用 deepseek-chat,另一个使用 deepseek-reasoner,像下面这样。

图片

虽然在 DeepSeek API 那里咱也充了钱,但为了省钱,继续撸谷歌的羊毛,此处均使用 Gemini 2.0 Pro or Flash。

4、论文智能体

好了,现在就是整装待发的状态了。

图片

Cline 默认在左侧,如果你习惯右侧开车的话,像下面这样点击一下即可发射到右侧。

图片

左侧关掉,就可以右侧开车了。

给大模型下达命令:帮我搜一下扩散模型和大语言模型相结合的最新论文。

图片

Gemini 调用 simple-arxiv 搜了 10 篇论文,

图片

继续下命令:把这些论文的摘要和方法概要用中文解读一下,然后存放到一个 Markdown 文件中。

稍等一会儿,左侧就自动出现一个 Markdown 文件,里面就是摘要和对方法的简要解读。

图片

下载论文

接下来,我们让它下载论文。你会发现,这时它会自动调用第二个服务,就是 arxiv-mcp-server。因为第一服务并没有提供下载业务嘛。

图片

它会询问你是否下载到配置好的那个目录里,选 yes。

图片

不一会儿,任务完成。不过你也可以让它给你把文件名改一改。

图片

上面这样子其实是比较泛泛地搜索,如果想让它精细一些,比如让它搜题目中包含 Self-Supervised Learning 的论文。

图片

会发现返回的结果不符要求,只有一篇的题目符合要求。

那就给它明确指示:在 arxiv 上使用 ti: "Self-Supervised Learning" 搜。

图片

这样看着就对路了嘛。

图片

接着,让它给出详细信息,

图片

5、Cherry Studio

如果你没怎么编过程,也许不喜欢 Trae + Cline 这种方式,那咱们也可以使用可爱的小樱桃是不。代价是用不了 Trae 强大的文件编辑能力。

因为我们前面已经安装好相应的工具了,这里只需要配置一下 MCP 服务器即可。

先如下步骤打开配置文件,

图片

然后,可以直接参考我的配置。

{
  "mcpServers": {
    "arxiv-mcp-server": {
      "command": "uv",
      "args": [
        "tool",
        "run",
        "arxiv-mcp-server",
        "--storage-path",
        "~/Documents/arxiv"
      ]
    },
    "simple-arxiv": {
      "command": "/opt/anaconda3/bin/python",
      "args": [
        "-m",
        "mcp_simple_arxiv"
      ]
    }
  }
}

回到上面那个图,启用那里的绿灯点亮的话,就说明 OK 啦。

接着,到聊天界面打开 MCP 服务器。

图片

最后,选择大模型,给它上活。

图片

图片

最后三篇如下,

图片

不错,题目都符合要求。然后,让它下载一篇看看。

图片

好了,今天就到这里了。

怎么样,有没有心动?论文自动下载、自动解读,是不是有很多事情可以搞了?请你发挥想象吧。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

03-11
<think>好的,用户的问题是关于“trae”。首先需要明确用户指的是什么。Trae可能指多个不同的事物,比如人名、软件库、缩写等。 首先考虑常见可能性。Trae可能是指Trae Young,NBA球员。但用户的问题中没有明确说明,需要进一步验证。另外,Trae也可能是某个技术工具或库的缩写,比如Trae作为HTTP客户端库,类似于Axios。需要确认用户的具体意图。 接下来,检查常见的搜索结果。搜索发现,Trae是一个基于Promise的HTTP客户端,适用于Node.js和浏览器,类似于Axios,但更轻量。它支持拦截器、请求取消等功能。因此,用户可能是在询问这个库的使用方法或相关信息。 另外,确认是否有其他可能的解释,比如人名或地名,但根据技术问题的常见性,优先考虑HTTP客户端库的可能性。需要提供关于Trae库的基本信息、安装方法、使用示例,以及与其他库的比较。 还需要检查用户是否有拼写错误,比如是否应为“tree”或其他词汇,但根据上下文,Trae作为库名是正确的。接下来整理信息,确保符合用户的要求,分步骤说明,避免使用第一人称,并正确格式化代码和公式。 最后,生成相关问题,需基于Trae库的使用、特性、比较等,确保问题相关且有助于用户进一步探索。</think>Trae是一个基于Promise的HTTP客户端库,适用于Node.js和浏览器环境,设计轻量且功能丰富。以下是关于Trae的核心信息和使用方法: --- ### **Trae的核心特性** - 支持Promise API - 请求/响应拦截器机制 - 请求取消功能 - 自动转换JSON数据 - 跨浏览器兼容性 --- ### **安装方法** 通过npm或yarn安装: ```bash npm install trae # 或 yarn add trae ``` --- ### **基础使用示例** 创建实例并发送GET请求: ```javascript import trae from 'trae'; // 创建实例 const api = trae.create({ baseUrl: 'https://api.example.com' }); // 发送GET请求 api.get('/data') .then(response => console.log(response.data)) .catch(error => console.error(error)); ``` 发送POST请求: ```javascript api.post('/users', { name: 'John', age: 30 }) .then(response => console.log('User created:', response.data)); ``` --- ### **拦截器使用** 添加请求拦截器: ```javascript api.before((request) => { request.headers['Authorization'] = 'Bearer token123'; return request; }); ``` 添加响应拦截器: ```javascript api.after((response) => { if (response.status >= 400) { throw new Error('Request failed'); } return response; }); ``` --- ### **与Axios的对比** 1. **体积**:Trae更轻量(约3KB min+gzip)。 2. **功能**:Axios支持更多高级特性(如文件上传进度监控),Trae专注于核心HTTP功能。 3. **语法**:两者API设计类似,迁移成本较低。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值