模型的 KS(Kolmogorov-Smirnov)

KS统计量通过比较正负例的累积分布函数差异,衡量模型在分类上的效果。它用于评价模型区分正负样本的能力,值越大表示区分度越好。KS值还可用于选择最优阈值平衡精度和召回率。许多机器学习库提供计算KS值的函数便于评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KS(Kolmogorov-Smirnov)统计量是一种用于评估二分类模型性能的指标,主要用于评估模型在正例和负例之间的区分度。KS统计量通过累积分布函数(CDF)的差异来衡量模型对正负样本的区分程度。

KS值的计算过程包括以下步骤:

  1. 计算分数: 对每个样本使用模型得到的概率或分数进行排序。
  2. 构建累积分布函数(CDF): 分别计算正例和负例中每个分数对应的累积百分比。
  3. 计算累积分布函数差异: 计算正例和负例累积分布函数之间的最大差异值,即KS统计量。

在这里插入图片描述


其中:

  • CDF正例(s) 是正例中分数小于等于s的样本的累积百分比。
  • CDF负例(s) 是负例中分数小于等于s的样本的累积百分比。

KS值的范围是0到1值越大表示模型在正例和负例之间的区分度越好

在某些场景中,KS值也被用于评估模型在不同阈值下的性能。例如,通过在不同概率或分数阈值下计算KS值,可以选择一个最佳的阈值来平衡模型的精确率和召回率。

在一些机器学习框架和库中,计算KS值的函数通常已经包含在性能评估工具中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值