强化学习 - Trust Region Policy Optimization (TRPO)

什么是机器学习

Trust Region Policy OptimizationTRPO)是一种策略梯度方法,用于解决强化学习问题。TRPO旨在通过限制策略更新的大小,提高训练的稳定性。这样可以防止在参数空间中迅速迭代导致过大的更新,从而保持策略在相邻状态上的相似性。

以下是一个使用 Python 和 TensorFlow/Keras 实现简单的 TRPO 的示例。在这个例子中,我们将使用 OpenAI GymCartPole 环境。

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam
import gym

# 定义TRPO Agent
class TRPOAgent:
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.gamma = 0.99  # 折扣因子
        self.lmbda = 0.95  # GAE(Generalized Advantage Estimation)的参数
        self.learning_rate = 0.001
        self.clip_ratio = 0.2

        # 构建演员(Actor)网络
        self.actor = self.build_actor()

    def build_actor(self):
        state_input = Input(shape=(self.state_size,))
        dense1 = Dense(64, activation='tanh')(state_input)
        dense2 = Dense(64, activation='tanh')(dense1)
        output = Dense(self.action_size, activation='softmax')(dense2)
        model = Model(inputs=state_input, outputs=output)
        model.compile(loss=self.trpo_loss, optimizer=Adam(lr=self.learning_rate))
        return model

    def get_action(self, state):
        state = np.reshape(state, [1, self.state_size])
        action_prob = self.actor.predict(state)[0]
        action = np.random.choice(self.action_size, p=action_prob)
        return action, action_prob

    def trpo_loss(self, y_true, y_pred):
        advantage = tf.placeholder(tf.float32, shape=(None, 1))
        old_policy_prob = tf.placeholder(tf.float32, shape=(None, self.action_size))
        new_policy_prob = y_pred

        ratio = tf.exp(tf.log(new_policy_prob + 1e-10) - tf.log(old_policy_prob + 1e-10))
        surrogate_loss = -tf.reduce_mean(ratio * advantage)

        kl_divergence = tf.reduce_sum(old_policy_prob * (tf.log(old_policy_prob + 1e-10) - tf.log(new_policy_prob + 1e-10)), axis=1)
        mean_kl_divergence = tf.reduce_mean(kl_divergence)

        grads = tf.gradients(surrogate_loss, self.actor.trainable_weights)
        grads_flatten = tf.concat([tf.reshape(g, [-1]) for g in grads], axis=0)
        fisher_vector_product = tf.gradients(mean_kl_divergence, self.actor.trainable_weights)
        fisher_vector_product_flatten = tf.concat([tf.reshape(fvp, [-1]) for fvp in fisher_vector_product], axis=0)
        fisher_vector_product_gradient = tf.reduce_sum(grads_flatten * fisher_vector_product_flatten)

        conjugate_gradient_step_direction = tf.placeholder(tf.float32, shape=(None,))
        conjugate_gradient_step = tf.gradients(fisher_vector_product_gradient, self.actor.trainable_weights)
        conjugate_gradient_step = tf.concat([tf.reshape(cgs, [-1]) for cgs in conjugate_gradient_step], axis=0)
        conjugate_gradient_step = conjugate_gradient_step / (conjugate_gradient_step @ conjugate_gradient_step_direction) * conjugate_gradient_step_direction

        flat_actor_gradients = tf.placeholder(tf.float32, shape=(None,))
        flat_fisher_vector_product = tf.placeholder(tf.float32, shape=(None,))
        kl_divergence_surrogate_loss_gradients = tf.gradients(mean_kl_divergence, self.actor.trainable_weights, -flat_actor_gradients)
        kl_divergence_surrogate_loss_gradients_flatten = tf.concat([tf.reshape(kldsg, [-1]) for kldsg in kl_divergence_surrogate_loss_gradients], axis=0)
        fisher_vector_product_surrogate_loss_gradients = tf.gradients(fisher_vector_product_gradient, self.actor.trainable_weights, flat_fisher_vector_product)
        fisher_vector_product_surrogate_loss_gradients_flatten = tf.concat([tf.reshape(fvpslg, [-1]) for fvpslg in fisher_vector_product_surrogate_loss_gradients], axis=0)
        grads_surrogate_loss_gradients = kl_divergence_surrogate_loss_gradients_flatten + fisher_vector_product_surrogate_loss_gradients_flatten

        conjugate_gradient_step_direction_result = np.zeros_like(flat_actor_gradients.shape)
        for _ in range(10):  # 通过共轭梯度法求解方程组
            feed_dict = {
                advantage: np.zeros((1, 1)),
                old_policy_prob: np.zeros((1, self.action_size)),
                flat_actor_gradients: np.zeros_like(conjugate_gradient_step_direction_result),
                flat_fisher_vector_product: conjugate_gradient_step_direction_result,
            }
            for i, placeholder in enumerate(self.actor._feed_input_tensors):
                feed_dict[placeholder] = np.zeros((1, *self.actor._feed_input_shapes[i][1:]))

            conjugate_gradient_step_direction_result = fisher_vector_product_gradients_result = grads_surrogate_loss_gradients_result = np.zeros_like(conjugate_gradient_step_direction_result)

            for _ in range(10):  # 通过逐步迭代求解共轭梯度方向
                feed_dict[conjugate_gradient_step_direction] = conjugate_gradient_step_direction_result
                feed_dict[flat_actor_gradients] = conjugate_gradient_step_direction_result

                cgsdr, fvpgdr, gslgdr = tf.keras.backend.get_session().run(
                    [conjugate_gradient_step_direction, fisher_vector_product_gradients, grads_surrogate_loss_gradients],
                    feed_dict=feed_dict
                )
                alpha = conjugate_gradient_step_direction_result @ conjugate_gradient_step / (cgsdr @ fisher_vector_product_gradients)
                conjugate_gradient_step_direction_result += alpha * cgsdr
                fisher_vector_product_gradients_result += alpha * fvpgdr
                grads_surrogate_loss_gradients_result += alpha * gslgdr

                residual = fisher_vector_product_gradients_result - grads_surrogate_loss_gradients_result
                beta = residual @ fisher_vector_product_gradients_result / (fisher_vector_product_gradients_result @ fisher_vector_product_gradients_result)
                conjugate_gradient_step_direction_result -= beta * residual

        return surrogate_loss

    def compute_advantages(self, rewards, values, dones):
        advantages = np.zeros_like(rewards, dtype=np.float32)
        running_add = 0
        for t in reversed(range(len(rewards))):
            running_add = running_add * self.gamma * (1 - dones[t]) + rewards[t]
            advantages[t] = running_add - values[t]
            running_add = values[t] + advantages[t] * self.gamma * self.lmbda
        return advantages

    def train(self, states, actions, rewards, values, dones):
        states = np.vstack(states)
        actions = np.vstack(actions)
        rewards = np.vstack(rewards)
        values = np.vstack(values)
        dones = np.vstack(dones)

        old_policy_prob = self.actor.predict(states)
        advantages = self.compute_advantages(rewards, values, dones)

        # 计算共轭梯度方向
        feed_dict = {
            self.actor.input: states,
            self.actor.output: old_policy_prob,
            self.actor.sample_weights[0]: advantages,
        }
        flat_actor_gradients_result, flat_fisher_vector_product_result = tf.keras.backend.get_session().run(
            [tf.concat([tf.reshape(grad, [-1]) for grad in tf.gradients(self.trpo_loss, self.actor.trainable_weights)], axis=0),
             tf.concat([tf.reshape(grad, [-1]) for grad in tf.gradients(tf.reduce_sum(tf.gradients(self.trpo_loss, self.actor.trainable_weights) @
                             tf.gradients(self.trpo_loss, self.actor.trainable_weights), axis=1), self.actor.trainable_weights)], axis=0)],
            feed_dict=feed_dict
        )

        # 计算步长
        conjugate_gradient_step_direction_result = np.zeros_like(flat_actor_gradients_result)
        for _ in range(10):  # 通过共轭梯度法求解方程组
            feed_dict = {
                self.actor.input: states,
                self.actor.output: old_policy_prob,
                self.actor.sample_weights[0]: advantages,
                tf.placeholder(tf.float32, shape=(None,)): conjugate_gradient_step_direction_result,
                tf.placeholder(tf.float32, shape=(None,)): flat_fisher_vector_product_result,
            }
            flat_actor_gradients_result, flat_fisher_vector_product_result = tf.keras.backend.get_session().run(
                [tf.concat([tf.reshape(grad, [-1]) for grad in tf.gradients(self.trpo_loss, self.actor.trainable_weights)], axis=0),
                 tf.concat([tf.reshape(grad, [-1]) for grad in tf.gradients(tf.reduce_sum(tf.gradients(self.trpo_loss, self.actor.trainable_weights) @
                                 tf.gradients(self.trpo_loss, self.actor.trainable_weights), axis=1), self.actor.trainable_weights)], axis=0)],
                feed_dict=feed_dict
            )
            alpha = conjugate_gradient_step_direction_result @ flat_actor_gradients_result / (conjugate_gradient_step_direction_result @ flat_fisher_vector_product_result)
            conjugate_gradient_step_direction_result += alpha * flat_actor_gradients_result

        # 利用共轭梯度方向更新参数
        feed_dict = {
            self.actor.input: states,
            self.actor.output: old_policy_prob,
            self.actor.sample_weights[0]: advantages,
            tf.placeholder(tf.float32, shape=(None,)): conjugate_gradient_step_direction_result,
        }
        new_actor_parameters = tf.keras.backend.get_session().run(
            [tf.concat([tf.reshape(param - alpha * grad, [-1]) for param, grad in zip(self.actor.trainable_weights, tf.gradients(self.trpo_loss, self.actor.trainable_weights))], axis=0)
             for alpha in [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2]],
            feed_dict=feed_dict
        )
        new_actor_parameters = [np.reshape(new_param, param.shape) for new_param, param in zip(new_actor_parameters[0], self.actor.get_weights())]
        self.actor.set_weights(new_actor_parameters)

# 初始化环境和Agent
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = TRPOAgent(state_size, action_size)

# 训练TRPO Agent
num_episodes = 500
for episode in range(num_episodes):
    state = env.reset()
    total_reward = 0
    states, actions, rewards, values, dones = [], [], [], [], []
    for time in range(500):  # 限制每个episode的步数,防止无限循环
        # env.render()  # 如果想可视化训练过程,可以取消注释此行
        action, action_prob = agent.get_action(state)
        next_state, reward, done, _ = env.step(action)
        total_reward += reward
        value = agent.actor.predict(np.reshape(state, [1, state_size]))[0]
        states.append(state)
        actions.append(action)
        rewards.append(reward)
        values.append(value)
        dones.append(done)
        state = next_state
        if done:
            print("Episode: {}, Total Reward: {}".format(episode + 1, total_reward))
            agent.train(states, actions, rewards, values, dones)
            break

# 关闭环境
env.close()

在这个例子中,我们定义了一个简单的TRPO Agent,包括演员(Actor)神经网络。在训练过程中,我们使用TRPO算法来更新演员网络的参数。请注意,TRPO算法的实现可能因问题的复杂性而有所不同,可能需要更多的技术和调整,如归一化奖励、使用更复杂的神经网络结构等。

  • 20
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: (TRPO)? Trust Region Policy Optimization (TRPO) 是一种用于强化学习的算法,它通过限制策略更新的步长,以确保每次更新都不会使策略变得太差。TRPO 是一种基于梯度的方法,它通过最大化期望收益来优化策略。TRPO 的主要优点是它可以保证每次更新都会使策略变得更好,而不会使其变得更差。 ### 回答2: Trust Region Policy OptimizationTRPO)是一种用于优化强化学习策略的算法。TRPO通过在每次更新策略时限制更新量,来解决策略优化中的非线性优化问题。其目标是在保证策略改进的同时,尽量减小策略更新带来的影响。 TRPO的核心思想是在每次迭代中保持一个信任区域,该区域内的策略改进之后的表现要比当前策略好。通过限制策略更新的KL散度(Kullback-Leibler Divergence),TRPO保证了平稳的、逐步改进的过程。 TRPO的算法步骤如下:首先,通过采样数据来估计策略的梯度;其次,通过求解一个约束优化问题来计算策略更新的方向和大小;最后,采用线搜索来确定在保证改进的前提下,策略更新的步长。 TRPO相对于其他的策略优化算法有几个优点。首先,TRPO可以高效地利用采样数据,避免了需求大量样本的问题。其次,通过控制策略更新的幅度,TRPO可以保持算法的稳定性和鲁棒性。最后,TRPO可以应用于各种不同类型的强化学习任务,并取得不错的性能。 总之,Trust Region Policy Optimization 是一种通过限制策略更新的KL散度来优化强化学习策略的算法。其核心思想是在每次迭代中维持一个信任区域,通过约束优化问题来计算策略更新,并使用线搜索来确定更新步长。TRPO具有高效利用采样数据,保持稳定性和适应性强的优点,能够在不同任务中取得良好性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值