自适应图像增强的方法介绍

  
图像增强的目的是采用某种技术手段,改善图像的视觉效果,或将图像转换成更适合于人眼观察和机器分析识别的形式,以便从图像中获取更有用的信息 .图像增强与感兴趣物体特性、观察者的习惯和处理目的相关,因此,图像增强算法应用是有针对性的,并不存在通用的增强算法。图像的增强用于调整图像的对比度,突出图像中的重要细节,改善视觉质量。
通常使用的图像增强的基本方法有:
1. 空间域处理: ”空间域”是指图像平面自身,它是以对图像的象素直接处理为基础的。包括:点处理(图像灰度变换、直方图均衡、伪彩色处理等);邻域处理(线性、非线性平滑和锐化等);
2. 频域处理:“频域”处理技术是以修改图像的付氏变换为基础的。常用的处理方法包括高、低通滤波、同态滤波等。
这里我们讨论自适应的图像增强方法。着重介绍自适应滤波的各种方法。自适应的本质是非线性系统,即:不可能通过线性化把它近似为线性系统。自适应有两类最基本的类型,即“模型参考自适应”和“自校正调节器”,以及在这两类基本类型的基础之上,结合人工智能、人工生命等发展出的新型复杂自适应技术。 在数字图像处理中,噪声的消除,也就是通过消除噪声达到图像增强和为后续处理提供 干净 的图像一直是人们关注的重点。按噪声对信号的影响可分为加性噪声和乘性噪声两大类。例如基于计算图像导数的算子中,图像中的任何一点噪声都会导致严重的错误。噪声与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。噪声可被译成或多或少的极值,这些极值通过加减作用于一些象素的真实灰度级上,在图像上造成黑白亮暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。因而对噪声进行抑制处理是图像处理中非常重要的一项工作。 在实际应用中,对于不同类型的信号和噪声,这些自适应滤波器参数必须经过优化才能得到较好的效果。然而,在许多情况下,人们对求这些参数所需的有关信号和噪声统计特性的先验知识所知甚少,某些情况下这些统计特性还是时变的。针对这种情况,自适应非线性滤波器就自然成为有效的处理手段。该类滤波器的简单工作过程为:首先输入信号通过参数可调数字滤波器后产生输出信号,将其与参考信号进行比较,形成误差信号。误差信号通过某种自适应算法对滤波器参数进行调整,最终使误差信号的均方值最小。在设计这种滤波器时不需要事先知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳,这也是自适应的由来。
在数字信号处理和数字图像处理的早期研究中,线性滤波器是噪声抑制处理和图像增强的主要手段。线性滤波器简单的数学表达形式以及某些理想特性使其很容易设计和实现。然而,当信号频谱与噪声频谱混叠时或者当信号中含有非叠加性噪声时 ( 例如由系统非线性引起的噪声或存在非高斯噪声等 ) ,线性滤波器的处理结果就很难令人满意。在处理图像时,传统的线性滤波器在滤除噪声的同时,往往会严重模糊图像细节(如边缘等),而且不能有效滤除椒盐噪声。就是说,线性滤波器在信号与噪声彼此相关情况下不能很好工作。虽然人类视觉的确切特性目前还未完全揭示出来,但许多实验表明,人类视觉系统的第一处理级是非线性的。基于上述原因,早在 1958 年维纳( Wiener )就提出了非线性滤波理论。非线性滤波器在一定程度上克服了线性滤波器的这一缺点。由于它能够在滤除噪声的同时,最大限度地保持了图像信号的高频细节,使图像清晰、逼真,从而得到广泛应用和研究。目前已有很多比较经典的非线性滤波算法,如:中值滤波、形态滤波以及基于中值滤波的一些改进滤波算法等。将神经网络与自适应相结合构成复杂自适应系统,适用与对多变量、非线性的复杂过程的自适应处理。神经网络的研究已有进30年的历史了。神经网络具有以下多方面的优点:(1)良好的非线性映射能力;(2)并行分布式处理信息;(3)具有良好的鲁棒性和容错性;(4)有归纳和联想记忆功能;(5)具有自学习、自组织、自适应的能力。
目前正在深入 研究的自适应图像增强非线性滤波算法:
 
数学各分支在理论和应用上的逐步深入,使得数学形态学、模糊数学、遗传算法、小波理论等在图像去噪技术应用中取得很大进展,产生了不少新的算法。主要有:

 
1 . 基于数学形态学的非线性滤波方法
形态学一般指生物学中研究动物和植物结构的一个分支。人们后来用数学形态学表示以形态为基础对图像进行分析的数学工具,它的基本思想是用具有一定形态的结构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。数学形态学的数学基础和描述语言是集合论。应用数学形态学可以简化图像数据,保持图像的基本形状特性,并除去不相干的结构,此外,数学形态学的算法还具有天然的并行实现结构。
由于形态滤波器是基于信号的几何特征,利用预先定义的结构元对信号进行匹配,以达到提取信号、保持细节和抑制噪声的目的,所以,结构元的选取是形态滤波的关键。在形态滤波应用的最初,人们选取方形或圆形作为结构元,相比于其它滤波方法,取得了较好的滤波效果。
传统的形态滤波由于只采用了单一的结构元(方形或圆形等),所以,在滤除噪声的同时,也会损失图像的一些细节。形态滤波器的输出不仅取决于变换形式和结构元的形状,而且取决于结构元的尺寸。由于传统的形态滤波只采用了一种结构元,所以其尺寸是单一的,在处理细节信息比较丰富的图像时,很难达到较理想的效果。
2 . 基于模糊数学的非线性滤波方法
随着处理数据的不断增加以及实时性要求的日益提高,模糊理论的作用越来越明显。在图像处理中采用模糊手段,可以大大减少信息的输入量、处理量和存储量,保证能实时而满意地处理各种问题。但是,模糊处理策略并不是对所有事物一视同仁的,而是根据不同的对象和不同的条件而有所不同。
(3) 基于遗传算法的非线性滤波方法

遗传算法是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,它主要用于处理最优化问题和机器学习等问题。隐含并行性和对全局信息的有效利用能力是遗传算法的两大显著特点,前者使遗传算法只需检测少量的结构就能反映搜索空间的大量区域,后者使遗传算法具有稳健性。该算法尤其适于处理传统搜索方法解决不了的复杂和非线性问题。它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。
遗传算法应用于滤波操作,大部分是为其它滤波器寻找最优的参数。与传统的寻优算法相比,遗传算法有着以下几点明显不同之处:随机的同时并行的搜索策略,避免陷入局部极值的具体措施,以及统一表达为方便处理的符号序列方法等。
(4 )基于神经网络的 非线性 滤波方法
由于神经网络滤波器本身具备本质上的并行运算能力,再加上它的自组织和自学习能力,使其在图像处理领域的应用越来越广泛。但是,实验证明,简单的神经网络系统,如BP网络,难以有效地滤除噪声。基于此,人们在神经网络中引入模糊理论,利用神经网络所具有的学习能力和自组织能力来对模糊网络的隶属度和推理规则进行学习和优化。由于人类的视觉系统本身就是一个模糊处理系统,所以,引入模糊理论的图像滤波能够获得更好的主观评价效果。这样,引入不同的模糊处理机制便可得到不同的滤波方案由神经网络的自适应学习算法,自动搜索网络的一组权值,并求得有限脉冲相应,完成滤波器的设计。 这些都是这类方法的优点。
可以考虑的其他方法:
除了上面提到的滤波方法之外,还有一些其它滤波方案,比如我们可以结合线性滤波和非线性滤波中的中值滤波思想的构建一种新型滤波器,充分利用这两类滤波器的优点,改善滤波性能;还有基于局部统计的增强技术,将图像不同区域不同的统计特征考虑在其中。
3 、图像和噪声本身的统计特性是图像除噪图像增强的难点
以上这些算法各有其优缺点,目前所涉及到的大部分非线性滤波算法都是针对特定图像或特定噪声提出的,也就是说,是基于它们的统计特性提出的滤波方案。但是,在实际处理中,自然图像的多样性和噪声本身的复杂性决定了这些滤波算法不可能对所有图像滤波效果均为最佳,所以,那些事先不需要知道图像和噪声统计特性的非线性滤波机制将会得到很广泛的应用:比如自适应滤波器和各种基于神经网络和模糊理论具有自组织、自学习等能力的滤波器的应用和研究将会得到更大的发展。这些滤波图像增强技术也是目前研究的重点。
4 、结论
近几年来,大多数算法都是在前述各种算法基础上发展而来的,通过改进这些算法的性能,在处理某些特定图像和特定噪声时取得了较好的效果。但要想彻底摆脱图像多样性和噪声复杂性的困扰,就必须将自适应机制、自组织能力、自学习能力与传统的成熟滤波算法相结合。目前,自然图像的多样性、噪声本身的复杂性仍是非线性滤波所面临的最大难题。对于一个好的图像处理系统,其中所涉及到的算法能否实时处理图像是该系统实用性的首要条件,过于复杂的滤波器在解决实际问题时是不能接受的。所以,对算法的优化将是实时处理实际问题的难点之一。这也是所有图像处理问题的共同特征。与线性滤波相比,非线性滤波缺乏系统性、严密性的数学理论基础。另外,对滤波器的 性能评价上也有一定的局限性。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页