【交通流预测论文】基于时空自监督学习的交通流预测

AAAI2023

摘要

在智能交通系统中,对不同时间段的城市交通流量进行鲁棒预测是至关重要的。虽然以往的研究在建立时空相关性模型方面做了大量的工作,但现有的方法仍然存在两个关键的局限性:1)大多数模型集中预测所有区域的交通流量,而没有考虑空间异质性,即不同区域的交通流量分布可能存在偏差。ii)这些模型无法捕捉时变交通模式引起的时间异质性,因为它们通常是在所有时间段内与共享参数化空间进行时间相关性建模。为了应对这些挑战,我们提出了一种新的时空自监督学习(ST-SSL)流量预测框架,该框架通过辅助的自监督学习范式,增强了交通模式表征,以反映时空异质性。具体来说,我们的ST-SSL构建在一个集成模块上,具有时间和空间卷积,用于跨空间和时间编码信息。为了实现自适应时空自监督学习,我们的STSSL首先在属性和结构级别对交通流图数据进行自适应增强。在增强流量图的基础上,构建了两个SSL辅助任务,通过时空异构感知增强对主要流量预测任务进行补充。在四个基准数据集上的实验表明,ST-SSL始终优于各种最先进的基线。由于时空异质性在实际数据集中广泛存在,所提出的框架也可能对其他时空应用有所启发。模型实现可从https://github.com/Echo-Ji/ST-SSL获得。

1 介绍

跨不同空间区域、不同时间段的稳健交通流预测对于推进智能交通系统至关重要(Zhang et al . 2020)。例如,准确的交通预测结果不仅可以及时有效地控制交通,还可以减少交通流量突然激增造成的悲剧。一般来说,交通预测的目的是根据过去的交通观察,预测交通量(例如,在给定时间内每个地区的流入和流出)。最近的进展极大地促进了使用各种深度学习技术进行交通流预测的研究,例如,区域网格上的卷积神经网络(Zhang, Zheng, and Qi 2017),用于空间依赖建模的图神经网络(Zhang et al 2021),以及用于空间信息聚合的注意机制(Zheng et al 2020)。尽管人们在改善交通流预测结果方面做出了巨大的努力,但现有模型仍然面临两个主要缺陷。

第一个限制是缺乏对不同区域交通分布倾斜的空间异质性的建模。以图1(a)为例,a和B是北京两个具有不同城市功能的现实世界区域,分别是居住区和交通枢纽。从图1(b)中我们可以看到它们的交通流分布有很大的不同。然而,现有的模型大多忽略了这种空间异质性,容易偏向于交通流量较大的热门区域,无法获得高质量的全市交通格局表征。

虽然一些研究试图用多个参数集捕捉不同区域的非均匀流动分布(Pan等,2019b;Bai et al . 2020),所涉及的大参数大小可能导致在倾斜分布的交通数据上的次优问题。更糟糕的是,这些方法的高计算和内存成本使得它们无法在实际城市场景中处理大规模交通数据。此外,元学习已被应用于最近的方法(Pan et al . 2019a;Y e et al . 2022)考虑区域流量分布的差异。然而,这些模型的有效性很大程度上依赖于收集到的手工制作的区域空间特征,例如附近的兴趣点和道路网络的密度,这限制了模型的表示泛化能力。

此外,现有的交通预测方法在所有时间段内都使用共享的参数空间来建模时间动态,这很难精确地保持潜在嵌入空间的时间异质性。在现实场景中,不同区域的交通模式会随着时间的变化而变化,例如从早上到晚上,这导致了如图1(c)所示的时间异质性。尽管如此,Song等人采用的参数空间分化策略2020;Li和Zhu 2021)假设整个时间段的时间异质性是静态的,这并不总是成立,例如,如图1(c)所示,工作日和节假日的夜间交通模式可能存在显著差异。为了有效地模拟空间和时间异质性,我们提出了一个新的时空自监督学习框架来预测交通流量。

为了对时空交通模式进行编码,我们的ST-SSL建立在一个图神经网络上,该网络集成了时间和空间卷积以进行信息聚合。为了捕捉交通流的空间异质性,我们设计了一种空间自监督学习范式,在数据级和结构级对交通流图进行扩充,以适应异构区域的交通分布。然后,引入软聚类模式的辅助自我监督,以了解不同区域之间的空间格局差异。为了将时间异质性注入到我们的潜在表示空间中,我们授权ST-SSL使用时间自监督学习范式来维护时间流量动态的专用表示。

我们总结了这项工作的主要贡献如下

•据我们所知,我们是第一个提出一种新的自监督学习框架来模拟交通流预测的时空异质性。这一模式可能会对其他实际的时空应用(如空气质量预测)有所启发。

•我们提出了一种基于图结构时空图的自适应异构感知数据增强方案,以对抗噪声扰动。

•引入两个自监督学习任务来补充主要的交通预测任务,通过增强模型识别能力和对交通时空异质性的认识。

•在四个真实世界的公共数据集上进行了广泛的实验,以显示我们的ST-SSL在各种设置中实现的一致性能优势。

2 准备

定义1(空间区域)。我们将一个城市划分为N=I \times J 不相交的地理网格,其中每个网格被认为是一个空间区域r_n(1\leq n\leq N)V=\left \{ r_1,...,r_N \right \}表示城市中设置的空间区域。

定义2(交通流图)。交通流图定义为G = (V, \varepsilon , A, X_{t-T:t}),其中V为大小为|V| = N的空间区域(节点)的集合,\varepsilon为连接V中两个空间相邻区域的边的集合。我们的交通流图的相邻矩阵记为A \in R^{N\times N}。我们用交通张量表示前T个时间步长的全市交通流入和流出数据:X_{t-T:t}\in R^{T \times N \times 2}=\left ( X_{t-T},...,X_t \right )。将所有地区𝑉V在第t个时隙的交通量信息记为X_t \in R^{N\times 2}

问题陈述。给定到当前时间步长的历史交通流图G,我们的目标是学习一个预测函数,能够准确估计未来时间步长t+1的所有区域的交通量,即X_{t+1} \in R^{N\times 2}

3 方法

本节详细介绍我们的STSSL模型的技术细节,其总体架构如图2所示。

3.1时空编码器

首先,我们提出了一种时空编码器来共同保存交通流图上的ST上下文信息,从而共同建模交通数据在不同时间步长的序列模式和空间区域之间的地理相关性。为此,我们将时间卷积分量与图卷积传播网络相结合,作为时空关系表示的主干。

为了编码时间交通模式,我们采用了带有门控机制的沿时间维度的一维因果卷积。具体来说,我们的时间卷积(TC)以交通流张量作为输入,输出每个区域的时间感知嵌入:

式中,B_t \in R^{N \times D}表示时间步t的区域嵌入矩阵,第n行b_{t,n}\in R^D对应区域r_n的嵌入。其中,D表示嵌入维数。T_{out}是在TC编码器中经过卷积运算后输出嵌入序列的长度。

为了捕获区域空间相关性,我们基于基于图形的消息传递机制设计了空间卷积(SC)编码器,如下所示:

A是G的区域邻接矩阵。通过我们的SC编码器,我们可以得到精细化的嵌入地理背景来描述所有区域。

我们的ST编码器采用“三明治”块结构构建,其中TC→SC→TC是每个单独的块。通过对多个块进行叠加,可以得到一个嵌入矩阵序列(H_{t-T'},...,H_t),经过几次卷积后的时间维数为T'。我们生成ST编码器的最终嵌入矩阵H \in R^{N \times D},其中每一行h_n \in R^D表示区域r_n的最终嵌入。

在下一小节中,我们将对(B_{t-T},...,B_t)进行自适应增强。

3.2 TFG的自适应图增强

我们在TFG  上设计了两阶段的图增强方案,分别是流量级数据增强和图拓扑级结构增强,这两阶段方案根据学习到的异构感知区域依赖关系的流量规律自适应。

区域异质性测量

对于区域r_n,其嵌入序列(b_{t-T,n},...,b_{t,n}),在T个时间步长内从(B_{t-T},...,B_t)生成整体嵌入如下:

u_n是基于派生的聚合权值p_{\tau ,n}在不同时间步长的区域r_n嵌入序列上的聚合表示。其中,\tau为时间步长范围(t-T,t)的指标。聚集权值p_{\tau ,n}反映了特定于时间步长的交通模式(b_{\tau ,n})与总体交通过渡规律(u_n)之间的相关性。b_{\tau ,n}为区域r_n在时间步长\tau处的嵌入,w_0 \in R^D为可学习的变换参数向量。

在我们的ST-SSL模型中,我们建议估计两个区域之间的异质性程度,以反映其流量分布随时间的差异

注意,q_{m,n}得分越大,表明区域r_m和区域r_n之间的流量模式依赖程度越高,从而导致异质性程度越低。

异构引导的数据增强

在我们的STSSL中,我们建议从流量级别和图拓扑级别进行数据增强,如下所示:

Traffic-level增大

受(Zhu et al . 2021)中的数据增强策略的启发,我们在构建的交通张量X_{t-T:t}上设计了一个增强算子,该算子自适应学习到的每个区域的时间感知交通模式依赖关系。特别是,我们的目标是基于从伯努利分布,即\rho _{\tau ,n}\sim Bern(1-p_{\tau ,n})中导出的掩膜概率\rho _{\tau ,n},来屏蔽区域r_n\tau-时间步长处不太相关的交通量。\rho _{\tau ,n}值越高,表明区域r_n\tau-时间步长的交通量x _{\tau ,n}与区域r_n整体交通规律的相关性越低,更容易被掩盖。带交通级增强的增强数据记为\tilde{X}_{t-T:t}

图拓扑级增强。

除了交通级别的增强,我们建议在区域交通流图G上进一步执行拓扑级别的增强,通过这样做,ST-SSL不仅可以消除具有低相互关联交通模式的区域连接,还可以捕获具有全球城市背景的长期区域依赖关系。为此,

i)给定两个空间相邻的区域r_mr_n,如果它们的流量规律不是高度依赖的,它们的连接边(r_m,r_n)\in \varepsilon将被掩盖,这两个区域的流量规律由高异质性程度q_{m,n}来衡量。掩码概率ρm,n由伯努利分布即\rho _{m ,n}\sim Bern(1-q_{m ,n})得出。

ii)对于两个非相邻区域,由于异质性程度q_{m,n}较低,会导致在r_mr_n之间添加一条边,这也是基于伯努利分布Bern(q_{m ,n})得出的掩蔽概率。

经过两次增广后,我们得到增广后的TFG \tilde{G}=(V,\tilde{\varepsilon },\tilde{A},\tilde{X}_{t-T:t}),其中去偏交通量输入为\tilde{X}_{t-T:t}(交通级增强),结构去噪为\tilde{\varepsilon }\tilde{A}(图拓扑级增强)。

3.3基于SSL的空间异质性建模

考虑到异构感知增强TFG,我们的目标是使区域嵌入在辅助自监督信号的情况下有效地保持空间异质性。

为了实现这一目标,我们在区域上设计了一个基于软聚类的自监督学习(SSL)任务,将它们映射到对应于不同城市区域功能(例如,住宅区,购物中心,交通枢纽)的多个潜在表示空间。具体来说,我们生成了K个聚类嵌入\left \{ c_1,...,c_K \right \}(以k为索引)作为区域聚类的潜在因子。形式上,聚类过程用\tilde{z}_{n,k}=c_k^T\tilde{h}_n进行。其中,\tilde{h}_n \in R^D是由增广的TFG \tilde{G}编码的区域r_n的区域嵌入。\tilde{z}_{n,k}表示区域r_n的嵌入与第k个聚类的嵌入c_k之间的估计相关性得分。然后,用\tilde{z}_n=(\tilde{z}_{n,1},...,\tilde{z}_{n,K})^T生成区域r_n的聚类分配。

为了提供基于异构感知软聚类范式的自监督信号用于增强,设计了辅助学习任务进行预测利用原始TFG G编码的区域嵌入h_n进行聚类分配为:\hat{z}_{n,k}=c_k^Th_n,其中\hat{z}_{n,k}\tilde{z}_{n,k}的预测分配分数。自监督增强任务优化如下:

其中\gamma为温度参数,用于控制softmax输出的平滑程度。所有区域的总体自监督目标定义如下:

通过将对h_n的监督与异质性感知区域聚类分配\tilde{z}_{n}相结合,使嵌入h_n的区域能够反映全球城市空间的空间异质性

区域聚类的分布正则化。

在我们的异构感知区域聚类范式中,我们生成了聚类分配矩阵\tilde{Z}=(\tilde{z}_1,...,\tilde{z}_N)^T\in R^{N \times K}作为生成数据增强的自监督信号。然而,为了拟合城市空间中区域特征的真实分布,需要解决两个问题:

i)由于\tilde{Z}是由矩阵产生的,因此不能保证每个区域的聚类分配总和为1,即\tilde{Z}1_K=1_N,其中1_N表示所有的n维向量。

ii)为了避免每个区域具有相同分配的平凡解,我们采用了最大熵原理,即:\tilde{Z}^T1_N=\frac{N}{K}1_K。这鼓励所有区域被集群平等地划分。为了解决这两个问题,我们将可行解集定义为:

对于任意赋值,我们可以用它来映射嵌入矩阵\tilde{H}=(\tilde{h}_1,...,\tilde{h}_N)^T \in R^{N \times D}到聚类矩阵C=(c_1,...,c_K)^T \in R^{K \times D}。因此,我们通过最大化嵌入和聚类之间的相似性来搜索最优解,即。

其中tr(·)是对方矩阵主对角线上的元素求和的跟踪算子,H(\tilde{Z})是定义为-\sum _{n,k}\tilde{z}_{n,k}log\tilde{z}_{n,k}的熵函数,而\epsilon是控制分配平滑度的参数。最后,将Eq.(6)中的原赋值替换为最优解。解决步骤请参见附录。

3.4 SSL用于时间异质性建模

在该组件中,我们进一步设计了一个自监督学习(SSL)任务,通过强制时间步长特定的流量模式表示之间的差异,将时间异质性注入到时间感知区域嵌入中。

具体来说,我们首先融合了原始和增强的TFG的编码时间感知区域嵌入:

其中⊙是元素向乘积。w_1, w_2是可学习的参数。然后,通过聚集所有区域的嵌入,在时间步t生成城市级表示s_t(\sigma为sigmoid函数):

为了增强不同时间步长的表征判别能力,我们将同一时间步长的区域级和城市级嵌入v_{t,n},s_t作为SSL任务的正对,将不同时间步长的嵌入作为负对。在这种设计中,正向配对的辅助监督将促进特定时间内全市交通趋势(如高峰时段、天气因素)的一致性,而负向配对则有助于捕捉不同时间步长的时间异质性。从形式上看,时间异质性增强 SSL 任务是通过以下损失与交叉熵度量进行优化的:

其中tt'表示两个不同的时间步长。g是一个判据函数,定义为

为可学习的变换矩阵。

3.5模型训练

在我们的ST-SSL学习过程中,我们将每个区域r_n的嵌入h_n \in H输入到MLP结构中,使未来时间步长t+1的交通流预测为

其中,\tilde{x}_{t+1,n}为预测结果。通过最小化损失函数来优化模型:

其中,x_{t+1,n}^{(0)},x_{t+1,n}^{(1)}分别表示流入和流出的基本真值。\lambda是一个参数,用于平衡每种交通流的影响。

最后,我们将Eq.(6)和(11)中的自监督时空异质性建模损失纳入联合学习目标,从而获得总体损失

我们的模型可以通过反向传播算法进行训练。整个训练过程可以概括为四个阶段:

i)给定一个TFG G,我们通过ST编码器生成一个区域嵌入矩阵H

ii)同时,我们执行自适应增强以细化G\tilde{G},将其输入共享ST编码器以输出\tilde{H}

iii)通过使用H\tilde{H},我们计算了用于产生接头损失L_{joint}的损失L_sL_tL_p

iv).我们使用反向传播算法来训练ST-SSL,直到L_{joint}收敛。

4实验

在本节中,我们在几个真实数据集上的一系列实验中评估ST-SSL的性能,这些实验总结为回答以下研究问题:

•RQ1:与各种基线相比,ST-SSL的整体流量预测性能如何?

•RQ2:设计的不同子模块对模型性能的贡献是什么?

•RQ3:对于异构空间区域和不同时间段,ST-SSL的性能如何?

•RQ4:增广图和学习表征如何使模型受益?

4.1实验设置

数据描述。

我们在表1中总结的两类公共现实交通数据集上评估了我们的模型。

第一种是关于纽约市的自行车租赁记录。NYCBike1 (Zhang, Zheng, and Qi 2017)的时间段为2014年1月4日至2014年9月30日,NYCBike2 (yao et al 2019)的时间段为2016年1月7日至2016年8月29日。每30分钟测量一次。第二种是关于出租车GPS轨迹的。NYCTaxi (yao et al 2019)的时间段为2015年1月1日至2015年1月3日。它的时间间隔是半小时。BJTaxi (Zhang, Zheng, and Qi, 2017)于2015年1月3日至2015年6月30日在北京收集,按小时计费。

对于所有数据集,使用预测时间前后的前2小时流量以及前3天流量来预测下一个时间步的流量。我们使用滑动窗口策略生成样本,然后以7:1:2的比例将每个数据集分成训练集、验证集和测试集。

评估指标和基线。

在我们的实验中,两个常用的指标用于评估:平均平均误差(MAE)和平均平均百分比误差(MAPE)。我们将建议的ST-SSL与8个基线进行比较,这些基线分为三类。

传统时间序列预测方法:

•ARIMA (Kumar and V anajakshi 2015):它是一个经典的时间序列预测模型。

•SVR (Castro-Neto et al . 2009):它是一种广泛用于时间序列分析的回归模型。

时空交通预测方法:

ST-ResNet (Zhang, Zheng, and Qi 2017):它是一个基于卷积的模型,构建多个流量时间序列来捕获时间依赖性,并利用残差卷积来建模空间相关性。

•STGCN (Y u, Yin, and Zhu 2018):它是一个基于图卷积的模型,结合1D卷积分别捕获空间和时间相关性。

•GMAN (Zheng et al . 2020):它是一种基于注意力的预测模型,采用编码器-解码器架构。

考虑异质性的时空方法

•AGCRN (Bai et al 2020):它通过自适应模块增强传统的图卷积,并将它们组合成循环网络以捕获时空相关性。

•STSGCN (Song et al 2020):通过时空同步建模机制捕获复杂的局部时空相关性。

•STFGNN (Li and Zhu 2021):它集成了STFGN模块和一种新型门通CNN模块,并通过数据驱动图及其与给定空间图的进一步融合来捕获隐藏的空间依赖关系。

最后一类方法采用多参数空间对流量异质性进行建模。

参数设置。

ST-SSL是用PyTorch实现的。嵌入维数D设置为64。ST编码器的时间和空间卷积核大小都设置为3。交通级和拓扑级增强的扰动比设为0.1。训练阶段使用Adam优化器执行,批大小为32。基线评估实验在LibCity (Wang et al . 2021)平台上使用其发布的代码进行。

4.2性能对比(RQ1)

表2给出了各种方法的比较结果。我们用5种不同的种子运行所有深度学习模型,并报告平均性能及其标准差。

ST-SSL的性能优势。

根据学生在0.01水平上的t检验,我们的ST-SSL在所有数据集上的两个指标上都明显优于其他竞争基线。这证明了ST-SSL在以自监督方式联合建模时空异质性方面的有效性。图3显示了ST-SSL和BJTaxi数据集上两个最佳基线的预测误差(|\hat{x}_n-x_n|/x_n),其中像素越亮意味着误差越大。仍然可以看出我们模型的优越性,这与表2的定量结果是一致的。有趣的是,ST-SSL在郊区表现出显著的改善(图3中的绿框),这证明了在全球相似区域之间传递信息的空间异质性建模的有效性。

基线之间的性能比较

在大多数情况下,时空预测方法优于时间序列方法,这表明有必要捕获空间依赖性。考虑到交通数据异质性的方法通常比那些在不同路段使用共享参数的方法性能更好区域和时间段,表明学习时空异质性在交通预测中的合理性。

4.3消融研究(RQ2)

为了分析ST-SSL框架中子模块的影响,我们对四种变体进行了消磁研究:•ST-SSL-sa:这种变体用随机边缘去除和加法增强取代了图拓扑上的异构引导结构增强。

•ST-SSL-ta:这种变体用随机流量屏蔽增强取代了异构引导的流量级增强。

•ST-SSL-sh:该变体在关节框架中禁用空间异质性建模。

•ST-SSL-th:该变体在联合框架中禁用时间异质性建模。

结果如图4所示。我们可以观察到ST-SSL优于随机增强的变体,表明我们的自适应异质性-的有效性在流量级和图结构级引导数据增强。此外,ST-SSL始终优于ST-SSL-sh和ST-SSL-th,这证明了联合建模时空异质性的必要性。综上所述,每个设计的子模块都对性能提升有积极的影响。

4.4稳健性分析(RQ3)

为了探索ST-SSL的鲁棒性,我们在BJTaxi上对具有异构数据分布的空间区域和具有不同模式的时间段进行了流量预测。具体来说,我们通过使用交通数据统计,即历史交通流的(均值、中位数、标准差)对区域进行聚类。如图5(a)所示,通常位于簇id较小的区域(颜色条旁边)在不太受欢迎的郊区,因此交通量较低。图5(b)展示了不同聚类的预测性能。我们的ST-SSL明显超过了其他基线,特别是在不太受欢迎的地区(用黑色圆圈标记),这与图3的结果一致。这也验证了ST-SSL能够准确预测不同空间区域类型的流量的鲁棒性。

对于时间异质性,根据城市交通节奏(Wang et al . 2019a),我们将工作日划分为四个时间段,将假日(包括周末)划分为两个时间段,其类别如图5(c)所示。评估性能如图5(d)所示。我们的ST-SSL在每个类别方面都优于基准。此外,ST-SSL在表示工作日夜间和假日的第3类和第5类中显示出显著改善。在这段时间里,交通流量数据通常是稀疏的,这使得基线很难产生准确的预测。STSSL可以处理这种情况,因为我们将时间异质性注入到时间感知区域嵌入中。

图5:异质空间区域和不同时间段的预测性能。

4.5定性研究(RQ4)

在图6中,我们研究了BJTaxi上的异构引导图拓扑级增强。我们的增强方法自适应地去除了具有异构交通模式的相邻区域之间的连接,即左家庄住宅区和三元桥(一个交通枢纽)。同时,在城市潜在功能相似的遥远区域之间建立联系,如西直门大桥和三元大桥,都是交通枢纽。通过这种方式,我们的ST-SSL不仅可以消除低相互关联交通模式的区域连接,还可以捕获全球城市背景下的长期区域依赖关系。

为了进一步探索为什么ST-SSL获得的嵌入可以比AGCRN提供更准确的流量预测,我们通过t-SNE在BJTaxi上可视化它们(V and der Maaten and Hinton 2008)。我们用ground truth类绘制所有区域的学习嵌入,如图5(a)所示。

如图7所示,ST-SSL的同类样品更加致密,而不同类别样品的分离效果明显更好。这使得ST-SSL能够意识到空间异质性,并在同一类别的区域之间传递信息,从而促进预测。

5相关工作

交通预测的深度学习。

基于各种神经网络的流量预测技术已经得到了广泛的研究。RNN (Wang et al . 2019b;使用Ji et al 2020)和1D CNN (Wang et al 2022, 2016)来捕获交通序列中的时间依赖性。CNN (Zhang, Zheng, and Qi 2017;yao et al . 2019), GNN (Zhang et al . 2020;引入Ji et al . 2022a)和注意机制(Zheng et al . 2020)来整合空间信息。然而,它们大多忽略了时空异质性问题。最近,一些研究通过使用多个模型(Y yuan, Zhou, and Y yang 2018)或多组参数(Bai et al 2020;Li and Zhu 2021),还有一些使用元学习基于不同区域的静态特征生成不同的权重(Pan et al . 2019a;Y等人2022)。

然而,这些方法要么引入了许多可能导致过拟合问题的参数,要么需要可能不可用的外部数据。为了克服这些限制,我们将自监督学习纳入交通预测以探索时空异质性。

表征学习的自监督学习。

自监督学习旨在从输入数据中提取有用信息,以提高表征质量(Ji et al . 2022b;Wu et al . 2020)。一般范例是增加输入数据,然后设计借口任务作为表示学习的伪标签(Ren et al 2021;任、王、赵2022)。它在文本(Devlin et al . 2019)、图像(Chen et al . 2020)和音频数据(Oord, Li, and Vinyals 2018)方面取得了巨大成功。在此基础上,本文提出了一种基于时空图数据的自适应数据增强方法,并引入两个借口任务来学习对时空异质性具有鲁棒性的表征,这在现有的交通流预测方法中尚未得到很好的探索。

6结论与未来工作

本文通过提出一种新的时空自监督学习(ST-SSL)框架来研究交通预测问题。具体来说,我们整合了时间和空间卷积来编码时空交通模式。然后,我们设计了

i)一个由自适应图增强和基于聚类的生成任务组成的空间自监督学习范式;

ii)一个依赖于时间感知的对比任务的时间自监督学习范式,以空间和时间异质性感知的自监督信号补充主要的交通流量预测任务。

在4个交通流数据集上的综合实验证明了ST-SSL算法的鲁棒性。未来的工作在于将我们的时空SSL框架扩展到一个与模型无关的范式。

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值